Advertisement

One construction of perfect ternary sequences

  • Evgeny KrengelEmail author
TC: SETA 2018 (by invitation only)
  • 44 Downloads

Abstract

We present a new construction of a family of perfect ternary sequences (PTSs) that is a generalization of one of the known families of PTSs. These PTSs of length N1N2 are derived from shift sequences of odd length N1 corresponding to m-sequences over GF(p) and PTSs of odd length N2. Ipatov PTSs are a special case where N2 = 1. For N2 ≥ 3, we find conditions under which the obtained PTSs are new. We also consider implementation issues of these sequences.

Keywords

Periodic autocorrelation Perfect ternary sequences Shift sequences 

Mathematics Subject Classification (2010)

94A55 

Notes

Acknowledgments

The author thanks the anonymous referees for their valuable comments and suggestions.

References

  1. 1.
    Ipatov, V.P.: Periodic discrete signals with optimal correlation properties. moscow, “Radio i svyaz” ISBN-5-256-00986-9 (1992)Google Scholar
  2. 2.
    Fan, P., Darnell, M.: Sequence Design for Communications Applications. Research Studies Press Ltd., London (1996)Google Scholar
  3. 3.
    Tompkins, D.N.: Codes with zero correlation. Hughess Aircraft Company, Culver city, California, Technical Memo 651 (1960)Google Scholar
  4. 4.
    Chang, J.A.: Ternary sequences with zero-correlation. Inproceedings of the IEEE 55(7), 1211–1213 (1967)CrossRefGoogle Scholar
  5. 5.
    Green, D.H., Kelsch, R.G.: Ternary pseudonoise sequences. Electronics letters 8(5), 112–113 (1972)CrossRefGoogle Scholar
  6. 6.
    Moharir, P.S.: Generalized PN sequences. IEEE Trans. Inf. Theory 23(6), 782–784 (1977)CrossRefGoogle Scholar
  7. 7.
    Sartwate, D.V., Pursley, M.B.: Crosscorrelation of pseudorandom and related sequences. Proceedings of IEEE 68(5), 593–619 (1980)CrossRefGoogle Scholar
  8. 8.
    Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions (corresp). IEEE Trans. Inform. Theory 14(1), 154–156 (1968)CrossRefGoogle Scholar
  9. 9.
    Niho, Y.: Multivalued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences. Ph.D. Dissertation, Univ. Southern Calif., Los Angeles (1970)Google Scholar
  10. 10.
    Kasami, T.: The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Inf. Control 18(4), 369–394 (1971)CrossRefGoogle Scholar
  11. 11.
    Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discr. Math. 16(3), 209–232 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shedd, D.A., Sarwate, D.V.: Construction of sequences with good corelation properties. IEEE Trans. Inf. Theory 25(1), 94–97 (1979)CrossRefGoogle Scholar
  13. 13.
    Hoholdt, T., Justesen, J.: Ternary sequences with perfect periodic auto-correlation. IEEE Trans. Inf. Theory 29(4), 597–600 (1983)CrossRefGoogle Scholar
  14. 14.
    Ipatov, V.P.: Ternary sequences with ideal periodic autocorrelation properties. Radio Eng. Electron. Phys. 24(10), 75–79 (1979)Google Scholar
  15. 15.
    Ipatov, V.P., Platonov, V.D., Samoilov, I.M.: A new class of triple sequences with ideal periodic autocorrelation properties (Russian). Izvestiya vyzov USSR. Mathematics, No. 3, pp. 47–50 (1983)Google Scholar
  16. 16.
    Kamaletdinov, B.S.: Ternary sequences with ideal periodic autocorrelation properties. Soviet J. Comm. Tech. Electron. 32, 157–162 (1987)MathSciNetGoogle Scholar
  17. 17.
    Golomb, S.W., Gong, G.: Signal design for good correlation: for wireless communication, cryptography, and radar. Cambridge University Press (2005)Google Scholar
  18. 18.
    Games, R.A.: Crosscorrelation of M-Sequences and GMW Sequences with the same primitive polynomial. Discret. Appl. Math. 12(2), 139–146 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Antweiler, M.: Cross-correlation of p-ary GMW sequences. IEEE Trans. Inform. Theory 40(4), 1253–1261 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cusick, T.W., Dobbertin, H.: Some new three-valued crosscorrelation functions for binary m-sequences. IEEE Trans. Inform. Theory 42(4), 1238–1240 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued crosscorrelation: a proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1), 4–8 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hollmann, H.D.L., Xiang, Q.: A proof of the Welch and Niho conjectures on cross-correlations of binary m-sequences. Finite Fields Appl. 7(2), 253–286 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Helleseth, T.: On the crosscorrelation of m-sequences and related sequences with ideal autocorrelation. In: Sequences and Their Applications (SETA’01), Bergen, 2001, pp 34–45. Springer, London (2002)CrossRefGoogle Scholar
  24. 24.
    Hertel, D.: Cross-correlation properties of perfect binary sequences. In: Proceedings 2004 International Conference on Sequences and Their Applications (SETA ’04), Seoul, Korea, revised selected papers, LNCS 3486, pp 208–219. Springer, Berlin (2005)CrossRefGoogle Scholar
  25. 25.
    Yu, N.Y., Gong, G.: Crosscorrelation Properties of Binary Sequences. Sequences and Their Applications (SETA 2006). Lecture Notes in Computer Science, (LNCS), vol. 4086, pp 104–118. Springer, Berlin (2006)Google Scholar
  26. 26.
    Games, R.A.: The geometry of quadrics and correlations of sequences. IEEE Trans. Inf. Theory 32(3), 423–426 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Jackson, W.-A., Wild, P.R.: Relations between two perfect ternary sequence constructions. Design, Codes and Cryptography 2(2), 325–322 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Arasu, K.T., Dillon, J.F., Jungnickel, D., Pott, A.: The solution of the Waterloo problem. J. Combin. Theory, Series A 71(2), 316–331 (1995)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jungnickel, D., Pott, A.: Perfect and almost perfect sequences. Discrete Appl. Math. 95(1–3), 331–359 (1999)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lee, C.E.: Perfect q-ary sequences from multiplicative characters over GF(p). Electron. Lett. 28(9), 833–835 (1992)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Schotten, H.D., Lüke, H. D.: New perfect and w-cyclic-perfect sequences. In: Proc. 1996 IEEE International Symp. on Information Theory and its Application, pp. 82–85. Victoria (1996)Google Scholar
  32. 32.
    Boztas, S., Parampalli, U.: Nonbinary sequences with perfect and nearly perfect autocorrelations. In: 2010 IEEE Int. Symp. on Information Theory Proc., (ISIT), pp. 1300–1304. Austin (2010)Google Scholar
  33. 33.
    Arasu, K.T., Dillon, J.F.: Perfect ternary arrays. Difference sets, sequences and their correlation properties (Bad Windsheim, 1998), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol. 542, pp 1–15. Kluwer Acad. Publ., Dordrecht (1999)Google Scholar
  34. 34.
    Arasu, K.T.: Sequences and arrays with desirable correlation properties. NATO Science for Peace and Security Series - D: Information and Communication Security. Vol. 29: Information Security, Coding Theory and Related Combinatorics, pp. 136–171 (2011)Google Scholar
  35. 35.
    Antweiler, M., Bömer, L., Lüke, H.D.: Perfect ternary arrays. IEEE Trans. Inf. Theory 36(3), 696–705 (1990)CrossRefGoogle Scholar
  36. 36.
    Krengel, E.I.: New polyphase perfect sequences with small alphabet. Electron. Lett. 44(17), 1013–1014 (2008)CrossRefGoogle Scholar
  37. 37.
    Lüke, H.D., Schotten, H.D., Hadinejad-Mahram, H.: Binary and quadriphase sequences with optimal autocorrelation properties: survey. IEEE Transactions on Information Theory 49(12), 3271–3282 (2003)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Mow, W.H.: Even-odd transformation with application to multi-user CW radars. In: Proceedings 1996 IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, pp. 191–193, Mainz (1996)Google Scholar
  39. 39.
    Baumert, L.D.: Cyclic Difference Sets. Springer, Berlin (1971)CrossRefGoogle Scholar
  40. 40.
    Krengel, E.I.: Almost-perfect and odd-perfect ternary sequences. In: Proceedings 2004 International Conference on Sequences and Their Applications (SETA ’04), Seoul, Korea, revised selected papers, LNCS 3486, pp 197–207. Springer, Berlin (2005)CrossRefGoogle Scholar
  41. 41.
    Krengel, E.I.: Some constructions of almost-perfect, odd-perfect and perfect polyphase and almost-polyphase sequences. In: Proceedings 2010 International Conference on Sequences and Their Applications (SETA 2010), Paris, France, LNCS 6338, pp 387–398. Springer, Berlin (2010)CrossRefGoogle Scholar
  42. 42.
    Les composants associes (cpas): List of prime numbers up to 1000000000000 (1000 billion) http://compoasso.free.fr/primelistweb/page/prime/liste_online_en.php, accessed Jule (2017)
  43. 43.
    Gong, G., Xiao, G.Z.: Synthesis and uniqueness of m-sequences over GF(q n) as n-phase sequence over GF(q). IEEE Trans. Commun. 42(8), 2501–2505 (1994)CrossRefGoogle Scholar
  44. 44.
    Krengel, E.I.: Periodic ideal ternary sequence generator. Patent RU2665290C1, Priority date 2017-08-17Google Scholar
  45. 45.
    Yang, Y., Gong, G., Tang, X.H.: Odd perfect sequences and sets of spreading sequences with zero or low odd periodic correlation zone. In: Proceedings 2010 International Conference on Sequences and Their Applications (SETA 2012), Waterloo, Canada, LNCS 7280, pp 1–12. Springer, Berlin (2012)Google Scholar
  46. 46.
    Yang, Y., Tang, X.H., Gong, G.: New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics on Communication 11(1), 67–76 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CJSC “New Wireless Technologies”MoscowRussia

Personalised recommendations