Polyphase zero correlation zone sequences from generalised bent functions

  • Dan ZhangEmail author
  • Matthew Geoffrey Parker
  • Tor Helleseth
Part of the following topical collections:
  1. on Special Issue on Sequences and Their Applications


Sequence families with zero correlation zone (ZCZ) have been extensively studied in recent years due to their important applications in quasi-synchronous code-division multiple-access (QS-CDMA) systems. To accommodate multiuser environments, multiple ZCZ sequence sets with low inter-set cross-correlation are expected. In this paper, we propose a construction of polyphase ZCZ sequences based on generalised bent functions. Moreover, multiple polyphase ZCZ sequence sets with good inter-set cross-correlation are presented. Each generated ZCZ sequence set is optimal with respect to the Tang-Fan-Matsufuji bound.


Quasi-synchronous code-division multiple-access (QS-CDMA) Zero correlation zone (ZCZ) Sequences Perfect autocorrelation Orthogonal sequences 

Mathematics Subject Classification (2010)

11B50 94A55 



The authors gratefully acknowledge constructive criticisms by the anonymous reviewers and valuable comments from the SETA conference. In addition, the authors specially thank prof. Zhengchun Zhou for his invaluable discussions on this topic and Nikolay Stoyanov Kaleyski for his grammar correction.


  1. 1.
    Appuswamy, R., Chaturvedi, A.K.: A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences. IEEE Trans. Inf. Theory 52(8), 3817–3826 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carlet, C., Ding, C.: Highly nonlinear mappings. J. Complex. 20(2), 205–244 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Deng, X., Fan, P.: Spreading sequence sets with zero correlation zone. Electron. Lett. 36(11), 1 (2000)CrossRefGoogle Scholar
  4. 4.
    Dillon, J.F.: Elementary Hadamard difference sets. Ph.D thesis (1974)Google Scholar
  5. 5.
    Fan, P.: Spreading sequence design and theoretical limits for quasisynchronous CDMA systems. EURASIP J. Wirel. Commun. Netw. 2004(1), 19–31 (2004)CrossRefGoogle Scholar
  6. 6.
    Fan, P., Hao, L.: Generalized orthogonal sequences and their applications in synchronous CDMA systems. IEICE Transactions on Fundamentals of Electronics. Commun. Comput. Sci. 83(11), 2054–2069 (2000)Google Scholar
  7. 7.
    Frank, R.L.: Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inform. Theory 8(6), 381–382 (1962)CrossRefGoogle Scholar
  8. 8.
    Golomb, S.W., Gong, G.: Signal design for good correlation: for wireless communication, cryptography, and radar. Cambridge University Press, Cambridge (2005)Google Scholar
  9. 9.
    Gong, G.: Constructions of multiple shift-distinct signal sets with low correlation. In: 2007. ISIT 2007. IEEE International Symposium on Information Theory, 2306–2310. IEEE (2007)Google Scholar
  10. 10.
    Heimiller, R.: Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inf. Theory 7(4), 254–257 (1961)CrossRefGoogle Scholar
  11. 11.
    Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Combin. Theory Ser. A 40(1), 90–107 (1985)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, J., Fan, J., Tang, X.: A generic construction of generalized chirp-like sequence sets with optimal zero correlation property. IEEE Commun. Lett. 17(3), 549–552 (2013)CrossRefGoogle Scholar
  13. 13.
    Liu, T., Xu, C., Li, Y.: Constructions of zero correlation zone sequence sets with low Cross-Correlation property. IEICE transactions on fundamentals of electronics. Commun. Comput. Sci. 100(7), 1583–1587 (2017)Google Scholar
  14. 14.
    Liu, Y. -C., Chen, C. -W., Su, Y.T.: New constructions of zero-correlation zone sequences. IEEE Trans. Inf. Theory 59(8), 4994–5007 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Popovic, B.M., Mauritz, O.: Generalized chirp-like sequences with zero correlation zone. IEEE Trans. Inf. Theory 56(6), 2957–2960 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rothaus, O.S.: On bent functions. J. Combin. Theory Ser. A 20(3), 300–305 (1976)CrossRefGoogle Scholar
  17. 17.
    Sarwate, D.: Bounds on crosscorrelation and autocorrelation of sequences (Corresp.) IEEE Trans. Inf. Theory 25(6), 720–724 (1979)CrossRefGoogle Scholar
  18. 18.
    Tang, X., Fan, P., Lindner, J.: Multiple binary ZCZ sequence sets with good Cross-Correlation property based on complementary sequence sets. IEEE Trans. Inf. Theory 56(8), 4038–4045 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tang, X., Mow, W.H.: Design of spreading codes for quasi-synchronous CDMA with intercell interference. IEEE J. Sel. Areas Commun. 24(1), 84–93 (2006)CrossRefGoogle Scholar
  20. 20.
    Tang, X.H., Fan, P.Z., Matsufuji, S.: Lower bounds on correlation of spreading sequence set with low or zero correlation zone. Electron. Lett. 36(6), 551–552 (2000)CrossRefGoogle Scholar
  21. 21.
    Tokareva, N.N.: Generalizations of bent functions. a survey. J. Appl. Ind. Math. 5(1), 110–129 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Torii, H., Nakamura, M., Suehiro, N.: A new class of zero-correlation zone sequences. IEEE Trans. Inf. Theory 50(3), 559–565 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Welch, L.: Lower bounds on the maximum cross correlation of signals (Corresp.) IEEE Trans. Inf. Theory 20(3), 397–399 (1974)CrossRefGoogle Scholar
  24. 24.
    Yang, K., Kim, Y.-K., Kumar, P. V.: Quasi-orthogonal sequences for code-division multiple-access systems. IEEE Trans. Inf. Theory 46(3), 982–993 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhou, Z., Zhang, D., Helleseth, T., Wen, J.: A construction of multiple optimal ZCZ sequence sets with good cross correlation. IEEE Trans. Inf. Theory 64(2), 1340–1346 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations