Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}\)

  • 128 Accesses

  • 1 Citations

Abstract

Double circulant codes of length 2n over the non-local ring \(R=\mathbb {F}_{q}+u\mathbb {F}_{q}, u^{2}=u,\) are studied when q is an odd prime power, and − 1 is a square in \(\mathbb {F}_{q}\). Double negacirculant codes of length 2n are studied over R when n is even, and q is an odd prime power. Exact enumeration of self-dual and LCD such codes for given length 2n is given. Employing a duality-preserving Gray map, self-dual and LCD codes of length 4n over \(\mathbb {F}_{q}\) are constructed. Using random coding and the Artin conjecture, the relative distance of these codes is bounded below for n. The parameters of examples of modest lengths are computed. Several such codes are optimal.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Alahmadi, A., Güneri, C., Özkaya, B., Shoaib, H., Solé, P.: On self-dual double negacirculant codes. Discret. Appl. Math. 222, 205–212 (2017)

  2. 2.

    Alahmadi, A., Güneri, C., Özkaya, B., Shoaib, H., Solé, P.: On linear complementary-dual multinegacirculant codes. arXiv:1703.03115v1 [cs.IT] (2017)

  3. 3.

    Alahmadi, A., Ozdemir, F., Solé, P.: On self-dual double circulant codes. Designs Codes & Cryptography. https://doi.org/10.1007/s10623-017-0393-x (2017)

  4. 4.

    Dougherty, S.T., Gaborit, P., Harada, M., Munemasa, A., Solé, P.: Type IV codes over rings. IEEE Trans. Inf. Theory 45(7), 2345–2360 (1999)

  5. 5.

    Dougherty, S.T., Kim, J.L., Özkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: Linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2/3), 116–128 (2017)

  6. 6.

    Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de

  7. 7.

    Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 42, 67–80 (2016)

  8. 8.

    Hooley, C.: On Artin’s conjecture. J. Reine Angew. Math 225, 209–220 (1967)

  9. 9.

    Huffman, W.C., Pless, V: Fundamentals of Error Correcting Codes. Cambridge University Press (2003)

  10. 10.

    Jia, Y.: On quasi-twisted codes over finite fields. Finite Fields Appl. 18, 237–257 (2012)

  11. 11.

    Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983)

  12. 12.

    Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: Finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2760 (2001)

  13. 13.

    Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes II: Chain rings. Des. Codes Cryptogr. 30(1), 113–130 (2003)

  14. 14.

    Liu, Y., Shi, M.J., Solé, P.: Construction of hermitian self-dual constacyclic codes over \(\mathbb {F}_{q^{2}}+v\mathbb {F}_{q^{2}}\). Appl. Comput. Math. 15(3), 359–369 (2016)

  15. 15.

    Meyn, H.: Factorization of the cyclotomic polynomial \(x^{2^{n}}+ 1\) over finite fields. Finite Fields Appl. 2, 439–442 (1996)

  16. 16.

    Moree, P.: Artin’s primitive root conjecture a survey. Integers 10(6), 1305–1416 (2012)

  17. 17.

    Magma website http://magma.maths.usyd.edu.au/magma/

  18. 18.

    Shi, M.J., Zhu, H.W., Solé, P.: On the self-dual four-circulant codes. Int. J. Found. Comput. Sci. 29(7), 1143–1150 (2018)

  19. 19.

    Shi, M.J., Guan, Y., Solé, P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017)

  20. 20.

    Zhu, S.X., Wang, L.: A class of constacyclic codes over \(\mathbb {F},_{p}+v\mathbb {F}_{p}\). Discret. Math. 311, 2677–2682 (2011)

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (61672036) and Excellent Youth Foundation of Natural Science Foundation of Anhui Province (1808085J20).

Author information

Correspondence to Minjia Shi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Zhu, H., Qian, L. et al. On self-dual and LCD double circulant and double negacirculant codes over \(\mathbb {F}_{q}+u\mathbb {F}_{q}\). Cryptogr. Commun. 12, 53–70 (2020). https://doi.org/10.1007/s12095-019-00363-9

Download citation

Keywords

  • Double circulant codes
  • Double negacirculant codes
  • Codes over rings
  • Self-dual codes
  • LCD codes
  • Artin conjecture

Mathematics Subject Classification (2010)

  • 94 B15
  • 94 B25
  • 05 E30