Relative profiles and extended weight polynomials of almost affine codes

  • Trygve JohnsenEmail author
  • Hugues Verdure
Part of the following topical collections:
  1. Special Issue on Coding Theory and Applications


In this paper we study various aspects concerning almost affine codes, a class including, and strictly larger than, that of linear codes. We use the combinatorial tool demi-matroids to show how one can define relative length/dimension and dimension/length profiles of flags (chains) of almost affine codes. In addition we show two specific results. One such result is how one can express the relative length/dimension profiles (also called relative generalized Hamming weights) of a pair of codes in terms of intersection properties between the smallest of these codes and subcodes of the largest code. The other result tells how one can find the extended weight polynomials, expressing the number of codewords of each possible weight, for each code in an infinite hierarchy of extensions of a code over a given alphabet.


Relative profiles Almost affine codes Extended weight polynomials 

Mathematics Subject Classification (2010)




  1. 1.
    Britz, T., Johnsen, T., Mayhew, D., Shiromoto, K.: Wei-type duality theorems for matroids. Des. Codes Crypogr. 62, 331–341 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Britz, T., Johnsen, T., Martin, J.: Chains, demi-matroids and profiles. IEEE Trans. Inf. Theory 60(1), 986–991 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Forney, G.F.: Dimension/length profiles and trellis complexity of linear block codes. IEEE Trans. Inf. Theory 40(6), 1741–1751 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gordon, G.: On brylaswski’s generalized duality. Math. Comput. Sci. 6(2), 135–146 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Huerga Represa, V.: Towers of Betti Numbers of Matroids and Weight Distribution of Linear Codes and Their Duals, Master’s Thesis in Pure Mathematics, University of Tromsø - The Arctic University of Norway. Available at (2015)
  6. 6.
    Jurrius, R.P.M.J.: Weight enumeration of codes from finite spaces. Des. Codes Crypt. 63, 321–330 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jurrius, R.P.M.J., Pellikaan, G.R.: Algebraic geometric modeling in information theory. In: Codes, Arrangements and Matroids. Seroes on Coding Theory and Cryptology. World Scientific Publishing, HackensackGoogle Scholar
  8. 8.
    Johnsen, T., Roksvold, J., Verdure, H.: A generalization of weight polynomials to matroids. Discret. Math. 339(2), 632–645 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Johnsen, T., Verdure, H.: Hamming weights of linear codes and Betti numbers of Stanley-Reisner rings associated with matroids. AAECC 24, 73–93 (2013)CrossRefGoogle Scholar
  10. 10.
    Johnsen, T., Verdure, H.: Generalized Hamming weights for almost affine codes. IEEE Trans. Inform. Theory 63(4), 1941–1953 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Johnsen, T., Verdure, H.: Flags of almost affine codes and the two-party wire-tap channel of type II. Designs, Codes and Crypography. (2017)
  12. 12.
    Johnsen, T., Verdure, H.: Relative generalized hamming weights and extended weight polynomials of almost affine codes. In: Coding Theory and Apllications, Proceedings of the 5’th International Castle Meeting, Vihula, Estonia, LNCS, vol. 10495, pp. 207–16 (2017)Google Scholar
  13. 13.
    Liu, Z., Chen, W., Luo, Y.: The relative generalized Hamming weight of linear q-ary codes and their subcodes. Des. Codes Crypt. 62, 111–23 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Luo, Y., Mitrpant, C., van Vinck, A.J., Chen, K.: Some new characters on the Wire-Tap channel of type II. IEEE Trans. Inf. Theory 51(3), 1222–1229 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)zbMATHGoogle Scholar
  16. 16.
    Simonis, J., Ashikhmin, A.: Almost affine codes. Des. Codes Crypogr. 14, 179–197 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhuang, Z., Dai, B., Luo, Y., Han Vinck, A.J.: On the relative profiles of a linear code and a subcode. Des. Codes Crypt. 72(2), 219–247 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UiT -The Arctic University of NorwayTromsøNorway

Personalised recommendations