Cryptography and Communications

, Volume 11, Issue 5, pp 839–852 | Cite as

A construction of Abelian non-cyclic orbit codes

  • Joan-Josep ClimentEmail author
  • Verónica Requena
  • Xaro Soler-Escrivà
Part of the following topical collections:
  1. Special Issue on Coding Theory and Applications


A constant dimension code consists of a set of k-dimensional subspaces of \(\mathbb {F}_{q}^{n}\), where \(\mathbb {F}_{q}\) is a finite field of q elements. Orbit codes are constant dimension codes which are defined as orbits under the action of a subgroup of the general linear group on the set of all k-dimensional subspaces of \(\mathbb {F}_{q}^{n}\). If the acting group is Abelian, we call the corresponding orbit code Abelian orbit code. In this paper we present a construction of an Abelian non-cyclic orbit code for which we compute its cardinality and its minimum subspace distance. Our code is a partial spread and consequently its minimum subspace distance is maximal.


Random linear network coding Subspace codes Grassmannian Group action General linear group Abelian group 



This work was partially supported by Spanish grants AICO/2017/128 of the Generalitat Valenciana and VIGROB287 of the Universitat d’Alacant.


  1. 1.
    Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204–1216 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bardestani, F., Iranmanesh, A.: Cyclic orbit codes with the normalizer of a Singer subgroup. J. Sci. Islamic Republic Iran 26(1), 49–55 (2015)MathSciNetGoogle Scholar
  3. 3.
    Bartoli, D., Pavese, F.: A note on equidistant subspace codes. Discret. Appl. Math. 198, 291–296 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Sasson, E., Etzion, T., Gabizon, A., Raviv, N.: Subspace polynomials and cyclic subspace codes. IEEE Trans. Inf. Theory 62(3), 1157–1165 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Climent, J.-J., Requena, V., Soler-Escrivà, X.: A construction of orbit codes. In: Barbero, Á.I., Skachek, V., Ytrehus, Ø. (eds.) Coding Theory and Applications – ICMCTA 2017, volume 10495 of Lecture Notes in Computer Science, pp. 72–83. Springer International Publishing AG, Switzerland (2017)Google Scholar
  6. 6.
    Cossidente, A., Pavese, F.: On subspace codes. Des. Codes Crypt. 78(2), 527–531 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fine, N.J.: Binomial coefficients modulo a prime. Am. Math. Mon. 54(10), 589–592 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ghatak, A.: Construction of Singer subgroup orbit codes based on cyclic difference sets. In: Proceedings of the Twentieth National Conference on Communications (NCC 2014), pp. 1–4, Kanpur, India. IEEE (2014)Google Scholar
  9. 9.
    Gluesing-Luerssen, H., Morrison, K., Troha, C.: Cyclic orbit codes and stabilizer subfields. Adv. Math. Commun. 9(2), 177–197 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gluesing-Luerssen, H., Troha, C.: Construction of subspace codes through linkage. Adv. Math. Commun. 10(3), 525–540 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gorla, E., Ravagnani, A.: Partial spreads in random network coding. Finite Fields Appl. 26, 104–115 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gorla, E.G., Ravagnani, A.: Equidistant subspace codes. Linear Algebra Appl. 490, 48–65 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ho, T., Koetter, R., Médard, M., Karger, D.R., Effros, M.: The benefits of coding over routing in a randomized setting. In: Proceedings of the 2003 IEEE international symposium on information theory (ISIT 2003), pp. 442, Yokohama, Japan. IEEE (2003)Google Scholar
  14. 14.
    Kötter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Laugier, A., Saikia, M.P.: A new proof of Lucas’ theorem. Proc. Am. Math. Soc. 18(4), 1–6 (2012)zbMATHGoogle Scholar
  16. 16.
    Lucas, É.: Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier. Bulletin de la Socié,té Mathématique de France 6, 49–54 (1878)CrossRefzbMATHGoogle Scholar
  17. 17.
    Manganiello, F., Gorla, E., Rosenthal, J.: Spread codes and spread decoding in network coding. In: Proceedings of the 2008 IEEE international symposium on information theory (ISIT 2008), pp. 881–885, Toronto, Canada. IEEE (2008)Google Scholar
  18. 18.
    Manganiello, F., Trautmann, A.-L., Rosenthal, J.: On conjugacy classes of subgroups of the general linear group and cyclic orbit codes. In: Proceedings of the 2011 IEEE international symposium on information theory (ISIT 2011), pp. 1916–1920, Saint Pettersburg, IEEE (2011)Google Scholar
  19. 19.
    Rosenthal, J., Trautmann, A.-L.: A complete characterization of irreducible cyclic orbit codes and their Plucker̈ embedding. Des. Codes Crypt. 66, 275–289 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Silberstein, N., Trautmann, A.-L.: New lower bounds for constant dimension codes. In: Proceedings of the 2013 IEEE international symposium on information theory (ISIT 2013), pp. 514–518, Istanbul. IEEE (2013)Google Scholar
  21. 21.
    Silberstein, N., Trautmann, A.-L.: Subspace codes based on graph matchings, Ferrers diagrams, and pending blocks. IEEE Trans. Inf. Theory 61(7), 3937–3953 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Trautmann, A.-L.: Isometry and automorphisms of constant dimension codes. Adv. Math. Commun. 7(2), 147–160 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Trautmann, A.-L., Manganiello, F., Braun, M., Rosenthal, J.: Cyclic orbit codes. IEEE Trans. Inf. Theory 59(11), 7386–7404 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Trautmann, A.-L., Manganiello, F., Rosenthal, J.: Orbit codes – a new concept in the area of network coding. In: Proceedings of the 2010 IEEE information theory workshop (ITW 2010), Dublin, Ireland. IEEE (2010)Google Scholar
  25. 25.
    Trautmann, A.-L., Rosenthal, J.: A complete characterization of irreducible cyclic orbit codes. In: Proceedings of the 7th international workshop on coding and cryptography (WCC 2011), pp. 219–228, Paris, France (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departament de MatemàtiquesUniversitat d’AlacantAlacantSpain

Personalised recommendations