Cryptography and Communications

, Volume 11, Issue 1, pp 77–92 | Cite as

New classes of p-ary bent functions

  • Bimal Mandal
  • Pantelimon Stănică
  • Sugata Gangopadhyay
Part of the following topical collections:
  1. Special Issue on Boolean Functions and Their Applications


In this paper, we consider the p-ary functions from \({\mathbb {F}_{p}^{n}}\) to \(\mathbb {F}_{p}\), where p is an odd prime. We characterize the subspace sum concept (depending upon the derivative) and give many of its properties. In particular, we show that the subspace sum of p-ary functions with respect to a subspace of \({\mathbb {F}_{p}^{n}}\) is an affine invariant. Further, we construct two new classes of p-ary bent functions, which do not contain one another.


Subspace sum p-ary bent functions Affine invariance 

Mathematics Subject Classification (2010)

06E30 94C10 



We thank the referees for the very useful comments that has immensely helped us to significantly improve both technical and editorial quality of the paper. The first two authors thank the Centre of Excellence in Cryptology (CoEC) and R. C. Bose Centre for Cryptology and Security of Indian Statistical Institute, Kolkata, for supporting their visits at the Indian Statistical Institute, Kolkata, during which period the above work was carried on.


  1. 1.
    Ambrosimov, A.C.: Properties of the Bent functions of q-Ary logic over finite fields. Discret Math 6:3, 50–60 (1994)MathSciNetGoogle Scholar
  2. 2.
    Assmus, E.F., Key, J.: Polynomial codes and finite geometries. In: Pless, V. S , Huffman, W. C., Brualdi, R. A. (eds.) Handbook of Coding Theory–Part 2: Connections. Ch. 16, pp 1269–1343. Elsevier, Amsterdam (1998)Google Scholar
  3. 3.
    Budaghyan, L., Carlet, C., Helleseth, T., Kholosha, A.: Generalized Bent functions and their relation to Maiorana-McFarland class. In: International Symposium on Information Theory, pp. 1212–1215 (2012)Google Scholar
  4. 4.
    Carlet, C.: Two new classes of Bent functions. In: Adv. Crypt. – Eurocrypt’93, LNCS, vol. 765, pp. 77–101 (1994)Google Scholar
  5. 5.
    Charpin, P: Codes cycliques étendus invariants sous le groupe affine. Thèse de Doctorat d’Etat́ Université Paris VII (1987)Google Scholar
  6. 6.
    Charpin, P.: Une generalisation de la construction de Berman des codes de Reed et Muler p-aires. Commun Algebra 16:11, 2231–2246 (1988)CrossRefGoogle Scholar
  7. 7.
    Chee, Y.M., Tan, Y., Zhang, X.D.: Strongly regular graphs constructed from p-ary Bent functions. J. Alg. Combinat. 34:2, 251–266 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dillon, J. F.: Elementary Hadamard difference sets. University of Maryland, Ph.D. dissertations (1974)zbMATHGoogle Scholar
  9. 9.
    Dillon, J.F.: Elementary Hadamard difference sets. In: Proceedings of 6th S. E. Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics, p. 237–249. Winnipeg (1975)Google Scholar
  10. 10.
    Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. Fast Software Encryption, Leuven 1994, LNCS 1008, pp. 61–74. Springer-Verlag (1995)Google Scholar
  11. 11.
    Golomb, S. M., Gong, G.: Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  12. 12.
    Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Handbook of Coding Theory II, pp. 1765–1853. North-Holland (1998)Google Scholar
  13. 13.
    Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52:5, 2018–2032 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hou, X.-D: p-ary and q-ary versions of certain results about bent functions and resilient functions. Finite Fields Applic. 10:4, 555–582 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hyun, J.Y., Lee, H., Lee, Y.: Necessary conditions for the existence of regular p-ary Bent functions. IEEE Trans. Inf. Theory 60:3, 1665–1672 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kim, S.H., No, J.S.: New families of binary sequences with low correlation. IEEE Trans. Inf. Theory 49:11, 3059–3065 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Combinat. Theory Ser. A 40:1, 90–107 (1985)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mandal, B., Stanica, P., Gangopadhyay, S., Pasalic, E.: An Analysis of the C Class of Bent Functions. Fundamenta Informaticae 146:3, 271–292 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Matthews, R.: Permutation properties of polynomials permutation properties of polynomials 1 + x + ⋯ + x k over a finite field. Proc. Amer. Math. Soc. 120:1, 47–51 (1994)zbMATHGoogle Scholar
  20. 20.
    Olsen, J.D., Scholtz, R.A., Welch, L.R.: Bent-function sequences. IEEE Trans. Inf. Theory 28:6, 858–864 (1982)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pott, A., Tan, Y., Feng, T., Ling, S.: Association schemes arising from Bent functions. Des Codes Cryptograph 59:1, 319–331 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rothaus, O.S.: On Bent functions. J. Combinat. Theory Ser. A 20:3, 300–305 (1976)CrossRefGoogle Scholar
  23. 23.
    Stinchcombe, T.E.: Aperiodic correlations of length 2m sequences, complementarity, and power control for OFDM, Ph.D. dissertation, Univ. London, London U.K. (2000)Google Scholar
  24. 24.
    Tan, Y., Pott, A., Feng, T.: Strongly regular graphs associated with ternary Bent functions. J. Combinat. Theory Ser. A 117:6, 668–682 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, L.: On permutation polynomials. Finite Fields Applic. 8:3, 311–322 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhou, Z., Tang, X.: New nonbinary sequence families with low correlation, large size, and large linear span. Appl. Math. Lett. 24:7, 1105–1110 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of Applied MathematicsNaval Postgraduate SchoolMontereyUSA
  3. 3.Department of Computer Science and EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations