Cryptography and Communications

, Volume 11, Issue 1, pp 3–20 | Cite as

On APN functions L1(x3) + L2(x9) with linear L1 and L2

  • Irene VillaEmail author
Part of the following topical collections:
  1. Special Issue on Boolean Functions and Their Applications


In a recent paper by L. Budaghyan, C. Carlet, and G. Leander (2009) it is shown that functions of the form L1(x3) + L2(x9), where L1 and L2 are linear, are a good source for construction of new infinite families of APN functions. In the present work we study necessary and sufficient conditions for such functions to be APN.


Boolean function Almost perfect nonlinear CCZ-equivalence Nonlinearity 

Mathematics Subject Classification (2010)

94A60 06E30 20B40 


  1. 1.
    Budaghyan, L., Carlet, C., Leander, G.: On a construction of quadratic APN functions. In: Proceedings of IEEE Information Theory workshop ITW’09, pp 374–378 (2009)Google Scholar
  2. 2.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Crypt. 15(2), 125–156 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions. IEEE Trans. Inform. Theory 14, 154–156 (1968)CrossRefGoogle Scholar
  4. 4.
    Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in Cryptography, EUROCRYPT’93, Lecture Notes in Computer Science, vol. 765, pp 55–64 (1994)Google Scholar
  5. 5.
    Janwa, H, Wilson, R.: Hyperplane sections of Fermat varieties in p 3 in char. 2 and some applications to cycle codes. In: Proceedings of AAECC-10, LNCS, vol. 673, pp 180–194. Springer, Berlin (1993)Google Scholar
  6. 6.
    Kasami, T.: The weight enumerators for several classes of subcodes of the second order binary Reed-Muller codes. Inform. and Control 18, 369–394 (1971)CrossRefGoogle Scholar
  7. 7.
    Dobbertin, H.: Almost perfect nonlinear power functions over G F(2n): the Welch case. IEEE Trans. Inform. Theory 45, 1271–1275 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dobbertin, H.: Almost perfect nonlinear power functions over G F(2n): the Niho case. Inform. and Comput. 151, 57–72 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Beth, T., Ding, C.: On almost perfect nonlinear permutations. In: Advances in Cryptology-EUROCRYPT’93, Lecture Notes in Computer Science, 765, pp 65–76. Springer-Verlag, New York (1993)Google Scholar
  10. 10.
    Dobbertin, H.: Almost perfect nonlinear power functions over G F(2n): a new case for n divisible by 5. In: Proceedings of Finite Fields and Applications FQ5, pp 113–121 (2000)Google Scholar
  11. 11.
    Yoshiara, S.: Equivalences of power APN functions with power or quadratic APN functions. Journal of Algebraic Combinatorics 44(3), 561–585 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dempwolff, U.: CCZ equivalence of power functions. submitted to Designs Codes and Cryptography (2017)Google Scholar
  13. 13.
    Budaghyan, L., Carlet, C., Leander, G.: On Inequivalence between Known Power APN Functions. In: Proceedings of the International Workshop on Boolean Functions: Cryptography and Applications. BFCA 2008, Denmark (2008)Google Scholar
  14. 14.
    Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear functions. IEEE Trans. Inform. Theory 52(3), 1141–1152 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Edel, Y., Kyureghyan, G., Pott, A.: A new APN function which is not equivalent to a power mapping. IEEE Trans. Inform. Theory 52(2), 744–747 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials inequivalent to power functions. IEEE Trans. Inform. Theory 54(9), 4218–4229 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Budaghyan, L., Carlet, C.: Classes of quadratic APN trinomials and hexanomials and related structures. IEEE Trans. Inform. Theory 54(5), 2354–2357 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from known ones. Finite Fields Appl. 15(2), 150–159 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl. 14 (3), 703–714 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bracken, C., Byrne, E., Markin, N., McGuire, G.: A few more quadratic APN functions. Cryptogr. Commun. 3(1), 43–53 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. In: IACR Cryptology ePrint Archive 2008, p 313 (2008)Google Scholar
  22. 22.
    Berger, T.P., Canteaut, A., Charpin, P., Lang-Chapuy, Y.: On Almost Perfect Nonlinear Functions Over F2n. IEEE Trans. Inform. Theory 52(9), 4160–4170 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Canteaut, A., Charpin, P., Kyureghyan, G.M.: A new class of monomial bent functions. Finite Fields Appl. 14(1), 221–241 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Browning, K.A., Dillon, J.F., Kibler, R.E., McQuistan, M.T.: APN polynomials and related codes. J. Comb. Inf. Syst. Sci. 34 (2009)Google Scholar
  25. 25.
    Yu, Y., Wang, M., Li, Y.: A matrix approach for constructing quadratic APN functions. Des. Codes Crypt. 73(27), 587–600 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations