Advertisement

Cryptography and Communications

, Volume 10, Issue 4, pp 705–717 | Cite as

Characteristic digit-sum sequences

  • Aleksandr Tuxanidy
  • Qiang Wang
Article
  • 172 Downloads
Part of the following topical collections:
  1. Special Issue on Sequences and Their Applications

Abstract

We introduce a new type of sequences using the sum of coefficients of characteristic polynomials for elements (in particular, primitive elements) in a finite field. These sequences are nonlinear filtering sequences of the well-known m-sequences. We show that they have large linear complexity and large period. We also provide some examples of such binary sequences with good autocorrelation values.

Keywords

Nonlinearly filtered LFSR sequences Linear complexity Maximum period Correlation 

Mathematics Subject Classification (2010)

94A55 

Notes

Acknowledgments

The research of Qiang Wang is partially supported by NSERC of Canada.

References

  1. 1.
    El Bachraoui, M.: On the number of subsets of [1,M] relatively prime to N and asymptotic estimates. Integ. Electron. J. Comb. Number Theory 8, #A41 (2008)MathSciNetMATHGoogle Scholar
  2. 2.
    Caballero-Gil, P., Fúster-Sabater, A.: A wide family of nonlinear filter functions with a large linear span. Inform. Sci. 164(1-4), 197–207 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cohen, S.D.: Primitive polynomials with a prescribed coefficient. Fin. Fields Appl. 12(3), 425–491 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dai, Z.D., Gong, G., Song, H.Y., Ye, D.F.: Trace representation and linear complexity of binary e-th power residue sequences of period p. IEEE Trans. Inform. Theory 57(3), 1530–1547 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fúster-Sabater, A., Caballero-Gil, P.: On the linear complexity of nonlinearly filtered PN-sequences. In: Advances in Cryptology-ASIACRYPT’94, Lecture Notes in Computer Science, vol. 917, pp 80–90. Springer-Verlag, Berlin (1995)Google Scholar
  6. 6.
    Gammel, B.M., Gottfert, R.: Linear filtering of nonlinear shift-register sequences, coding and cryptography. Lect. Notes Comput. Sci. 3969, 354–370 (2006)CrossRefMATHGoogle Scholar
  7. 7.
    Gold, R.: Optimal binary sequences for spread spectrum multiplexing. IEEE Trans. Inform. Theory 14, 154–156 (1968)CrossRefGoogle Scholar
  8. 8.
    Golomb, W., Gong, G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  9. 9.
    Hu, H., Gong, G.: Periods on two kinds of nonlinear feedback shift registers with time varying feedback functions. Int. J. Found. Comput. Sci. 22(6), 1317–1329 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kasami, T: Weight distribution formula for some class of cyclic codes. Coordinated Science Laboratory, University of Illinois, Urbana Technical Report R285 (AD632574) (1966)Google Scholar
  11. 11.
    Key, E.L.: An analysis of the structure and complexity of nonlinear binary sequence generators. IEEE Trans. Inform. Theory 22, 732–736 (1976)CrossRefMATHGoogle Scholar
  12. 12.
    Kumar, P.V., Scholtz, R.A.: Bounds on the linear span of bent sequences. IEEE Trans. Inform. Theory 29, 854–862 (1983)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Macdonald, I.G.: Macdonald, Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (1979)Google Scholar
  14. 14.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory 15, 122–127 (1969)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Massey, J.L., Serconek, S.: A fourier transform approach to the linear complexity of nonlinearly filtered sequences. Advances in Cryptology, CRYPTO, vol. 839, Lecture Notes in Computer Science, pp. 332–340 (1994)Google Scholar
  16. 16.
    No, J.S., Kumar, P.V.: A new family of binary pseudorandom sequences having optimal periodic correlation properties and large linear span. IEEE Trans. Inform. Theory 35, 371–379 (1989)CrossRefMATHGoogle Scholar
  17. 17.
    Paterson, K.G., counting, Root: the DFT and the linear complexity of nonlinear filtering. Des. Codes Cryptogr. 14(3), 247–259 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer-Verlag, Berlin (1986)CrossRefMATHGoogle Scholar
  19. 19.
    Tuxanidy, A., Wang, Q.: A new proof of the Hansen-Mullen irreducibility conjecture. Canad. J. Math., 18.  https://doi.org/10.4153/CJM-2017-022-1
  20. 20.
    Tuxanidy, A., Wang, Q.: Irreducible polynomials with prescribed digit sums. arXiv:1605.00351, pp. 1–13 (2016)

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations