Cryptography and Communications

, Volume 9, Issue 5, pp 647–664

# A class of hyper-bent functions and Kloosterman sums

Article

## Abstract

This paper is devoted to the characterization of hyper-bent functions. Several classes of hyper-bent functions have been studied, such as Charpin and Gong’s family $$\sum \limits _{r\in R}\text {Tr}_{1}^{n} (a_{r}x^{r(2^{m}-1)})$$ and Mesnager’s family $$\sum \limits _{r\in R}\text {Tr}_{1}^{n}(a_{r}x^{r(2^{m}-1)}) +\text {Tr}_{1}^{2}(bx^{\frac {2^{n}-1}{3}})$$ . In this paper, we generalize these results by considering the following class of Boolean functions over $$\mathbb {F}_{2^{n}}$$:
$$\sum\limits_{r\in R}\sum\limits_{i=0}^{2}T{r^{n}_{1}}(a_{r,i} x^{r(2^{m}-1)+\frac{2^{n}-1}{3}i}) +T{r^{2}_{1}}(bx^{\frac{2^{n}-1}{3}}),$$
where $$n=2m$$, m is odd, $$b\in \mathbb {F}_{4}$$, and $$a_{r,i}\in \mathbb {F}_{2^{n}}$$. With the restriction of $$a_{r,i}\in \mathbb {F}_{2^{m}}$$, we present a characterization of hyper-bentness of these functions in terms of crucial exponential sums. For some special cases, we provide explicit characterizations for some hyper-bent functions in terms of Kloosterman sums and cubic sums. Finally, we explain how our results on binomial, trinomial and quadrinomial hyper-bent functions can be generalized to the general case where the coefficients $$a_{r,i}$$ belong to the whole field $$\mathbb {F}_{2^{n}}$$.

### Keywords

Bent functions Hyper-bent functions Walsh-Hadmard trasform Dickson polynomials Kloosterman sums

06E75 94A60

### References

1. 1.
Canteaut, A., Charpin, P., Kyureghyan, G.: A new class of monomial bent functions. Finite Fields Appl 14(1), 221–241 (2008)
2. 2.
Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In: Crama, Y., Hammer, P (eds.) Chapter of the monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp 257–397. Cambridge University Press, Cambridge (2010)
3. 3.
Carlet, C., Gaborit, P.: Hyper-bent functions and cyclic codes. J. Comb. Theory Ser. A 113(3), 466–482 (2006)
4. 4.
Carlitz, L.: Explicit evaluation of certain exponential sums. Math. Scand. 44, 5–16 (1979)
5. 5.
Charpin, P., Gong, G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inf. Theory 54(9), 4230–4238 (2008)
6. 6.
Charpin, P., Helleseth, T., Zinoviev, V.: The divisibility modulo 24 of Kloosterman sums of GF(2m), m odd. J. Comb. Theory, Series A 114, 322–338 (2007)
7. 7.
Charpin, P., Kyureghyan, G.: Cubic monomial bent functions: a subclass of M. SIAM J. Discret. Math. 22(2), 650–665 (2008)
8. 8.
Dillon, J.F.: Elementary Hadamard difference sets. PhD Dissertation, University of Maryland College Park (1974)Google Scholar
9. 9.
Dillon, J.F., Dobbertin, H.: New cyclic difference sets with Singer parameters. Finite Fields Appl. 10(3), 342–389 (2004)
10. 10.
Dobbertin, H., Leander, G., Canteaut, A., Carlet, C., Felke, P., Gaborit, P.: Construction of bent functions via Niho power functions. J. Comb. Theory Ser. A 113, 779–798 (2006)
11. 11.
Flori, J.P., Mesnager, S.: An efficient characterization of a family of hyper-bent functions with multiple trace terms. J. Math. Cryptol. 7(1), 43–68 (2013)
12. 12.
Flori, J.P., Mesnager, S.: Dickson polynomials, hyperelliptic curves and hyper-bent functions. In: Proceedings of the 7th International Conference Sequences and Their Applications, SETA 2012, Waterloo. Lecture Notes in Computer Science, vol. 7780, pp 40–52. Springer, Berlin (2012)Google Scholar
13. 13.
Flori, J.P., Mesnager, S., Cohen, G.: The Value 4 of Binary Kloosterman Sums. In: Proceedings of the Thirteenth International Conference on Cryptography and Coding, Oxford, United Kingdom, IMACC 2011. Lecture Notes in Computer Science, vol. 7089, pp 61–78. Springer, Berlin (2011)Google Scholar
14. 14.
Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation functions. IEEE Trans. Inf. Theory 14(1), 154–156 (1968)
15. 15.
Gong, G., Golomb, S.: Transform domain analysis of DES. IEEE Trans. Inf. Theory 45(6), 2065–2073 (1999)
16. 16.
Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Inf. Theory 36(3), 686–692 (1990)
17. 17.
Leander, G.: Monomial bent functions. Proceedings of WCC 2006, pp. 462–470, (2005). And IEEE Trans. Inf. Theory, 52(2), 738–743 (2006)Google Scholar
18. 18.
Leander, G., Kholosha, A.: Bent functions with 2r Niho exponents. IEEE Trans. Inf. Theory 52, 5529–5532 (2006)
19. 19.
Li, N., Helleseth, T., Tang, X., Kholosha, A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inf. Theory 59(3), 1818–1831 (2013)
20. 20.
Lisoněk, P.: An efficient characterization of a family of hyperbent functions. IEEE Trans. Inf. Theory 57(9), 6010–6014 (2011)
21. 21.
Lisoněk, P.: On the connection between Kloosterman sums and elliptic curves. In: Golomb et al. (ed.) Proceedings of the 5th International Conference on Sequences and Their Applications (SETA 2008), Lecture Notes in Computer Science, vol. 5203, pp 182–187. Springer (2008)Google Scholar
22. 22.
Mesnager, S.: A new class of bent and Hyper-Bent Boolean functions in polynomial forms. Des. Codes Cryptogr. 59(1-3), 265–279 (2011). see also proceedings of WCC 2009
23. 23.
Mesnager, S.: A new family of hyper-bent Boolean functions in polynomial form. In: Mesnager, S. (ed.) Proceedings of Twelfth International Conference on Cryptography and Coding. Cirencester, IMACC 2009, LNCS 5921, pp 402–417. Springer, Heidelberg (2009)Google Scholar
24. 24.
Mesnager, S.: Hyper-bent Boolean functions with multiple trace terms. In: Proceedings of International Workshop on the Arithmetic of Finite Fields (WAIFI 2010). Lecture Notes in Computer Science, vol. 6087, pp 97–113 (2010)Google Scholar
25. 25.
Mesnager, S.: Bent and hyper-bent functions in polynomial form and their link with some exponential sums and Dickson polynomials. IEEE Trans. Inf. Theory 57(9), 5996–6009 (2011)
26. 26.
Mesnager, S.: A new family of hyper-bent Boolean functions in polynomial form. In: Proceedings of Twelfth International Conference on Cryptography and Coding (IMACC 2009). Lecture Notes in Computer Science, vol. 5921, pp 402–417. Springer, Heidelberg (2009)Google Scholar
27. 27.
Mesnager, S., Flori, J.P.: Hyper-bent functions via Dillon-like exponents. IEEE Trans. Inf. Theory 59(5), 3215–3232 (2013)
28. 28.
Lidl, R., Mullen, G.L., Turnwald, G.: Dickson Polynomials (1993)Google Scholar
29. 29.
Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976)
30. 30.
Schoof, R.: Counting Points on Elliptic Curves over Finite Fields. J. Theor. Nombres Bordeaux 7, 219–254 (1995)
31. 31.
Tang, C., Li, N., Qi, Y., Zhou, Z., Helleseth, T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166-1176 (2016)Google Scholar
32. 32.
Wang, B., Tang, C., Qi, Y., Yang, Y.: A generalization of the class of hyper-bent Boolean functions in binomial forms. Cryptology ePrint Archive, Report 2011/698 (2011). http://eprint.iacr.org/
33. 33.
Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: A new class of hyper-bent Boolean functions in binomial forms. CoRR, abs/1112, 0062 (2011)Google Scholar
34. 34.
Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: A new class of hyper-bent Boolean functions in binomial forms. CoRR, arXiv:1112.0062
35. 35.
Youssef, A.M., Gong, G.: Hyper-bent functions. In: Proceedings of EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045, pp 406–419. Springer, Berlin (2001)Google Scholar
36. 36.
Yu, N.Y., Gong, G.: Construction of quadratic bent functions in polynomial forms. IEEE Trans. Inf. Theory 7(52), 3291–3299 (2006)