Advertisement

Cryptography and Communications

, Volume 8, Issue 3, pp 313–330 | Cite as

On various nonlinearity measures for boolean functions

  • Joan Boyar
  • Magnus Gausdal Find
  • René Peralta
Article

Abstract

A necessary condition for the security of cryptographic functions is to be “sufficiently distant” from linear, and cryptographers have proposed several measures for this distance. In this paper, we show that six common measures, nonlinearity, algebraic degree, annihilator immunity, algebraic thickness, normality, and multiplicative complexity, are incomparable in the sense that for each pair of measures, μ 1,μ 2, there exist functions f 1,f 2 with f 1 being more nonlinear than f 2 according to μ 1, but less nonlinear according to μ 2. We also present new connections between two of these measures. Additionally, we give a lower bound on the multiplicative complexity of collision-free functions.

Keywords

Boolean functions Nonlinearity Multiplicative complexity Algebraic degree Annihilator immunity Thickness Normality Collision-free 

Mathematics Subject Classification (2010)

94C10 94A60 06E30 

Notes

Acknowledgments

We are grateful to Meltem Sönmez Turan for many discussions on the subject of this work.

References

  1. 1.
    Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. J. Cryptol. 13, 449–472 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G., Serna, M.J. (eds.) CIAC, Lecture Notes in Computer Science, vol. 7878, pp 61–72. Springer (2013)Google Scholar
  3. 3.
    Boyar, J., Find, M.G.: Constructive relationships between algebraic thickness and normality. In: The Proceedings of FCT 2015 (Lecture Notes in Computer Science vol. 9210). CoRR arXiv:http://arxiv.org/abs/1410.1318 (2014)
  4. 4.
    Boyar, J., Find, M.G.: The relationship between multiplicative complexity and nonlinearity. In: Csuhaj-Varju̇, E., Dietzfelbinger, M., Ėsik, Z. (eds.) Mathematical Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, Lecture Notes in Computer Science, vol. 8635, pp 130–140. Springer (2014), doi: 10.1007/978-3-662-44465-812
  5. 5.
    Boyar, J., Peralta, R.: Tight bounds for the multiplicative complexity of symmetric functions. Theor. Comput. Sci. 396(1-3), 223–246 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis (∧,⊕,1). Theor. Comput. Sci. 235(1), 43–57 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Braeken, A., Preneel, B.: On the algebraic immunity of symmetric Boolean functions. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT, Lecture Notes in Computer Science, vol. 3797, pp 35–48. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Canteaut, A., Videau, M.: Symmetric Boolean functions. IEEE Trans. Inf. Theory 51(8), 2791–2811 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carlet, C.: On cryptographic complexity of Boolean functions. In: Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, pp 53–69. Springer (2002)Google Scholar
  10. 10.
    Carlet, C.: On the degree, nonlinearity, algebraic thickness, and nonnormality of Boolean functions, with developments on symmetric functions. IEEE Trans. Inf. Theory 50(9), 2178–2185 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chap. 8, pp 257–397. Cambridge University Press, Cambridge, UK (2010)Google Scholar
  12. 12.
    Carlet, C., Dalai, D.K., Gupta, K.C., Maitra, S.: Algebraic immunity for cryptographically significant Boolean functions: Analysis and construction. IEEE Trans. Inf. Theory 52(7), 3105–3121 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cohen, G., Tal, A.: Two structural results for low degree polynomials and applications. In: The Proceedings for RANDOM 2015. CoRR arXiv:http://arxiv.org/abs/1404.0654 (2015)
  14. 14.
    Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in cryptography and cryptanalysis. E-print can be found at http://eprint.iacr.org/2011/475.pdf
  15. 15.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT, Lecture Notes in Computer Science, vol. 2656, pp 345–359. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Dalai, D.K., Gupta, K.C., Maitra, S.: Results on algebraic immunity for cryptographically significant Boolean functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT, Lecture Notes in Computer Science, vol. 3348, pp 92–106. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean functions with maximum possible annihilator immunity. Des. Codes Cryptography 40 (1), 41–58 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Demenkov, E., Kulikov, A.S.: An elementary proof of a 3n - o(n) lower bound on the circuit complexity of affine dispersers. In: Murlak, F., Sankowski, P. (eds.) MFCS, Lecture Notes in Computer Science, vol. 6907, pp 256–265. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Didier, F.: A new upper bound on the block error probability after decoding over the erasure channel. IEEE Trans. Inf. Theory 52(10), 4496–4503 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. In: Preneel, B. (ed.) FSE, Lecture Notes in Computer Science, vol. 1008, pp 61–74. Springer, Heidelberg (1994)Google Scholar
  21. 21.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the nineteenth annual ACM symposium on Theory of computing, STOC ’87, pp 218–229. ACM, New York, NY, USA (1987). doi: 10.1145/28395.28420
  22. 22.
    Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  23. 23.
    Kavut, S., Maitra, S., Yücel, M.D.: There exist Boolean functions on n (odd) variables having nonlinearity > 2 n−1 - 2 (n−1)/2 if and only if n >7. IACR Cryptology ePrint Archive 2006, 181 (2006)Google Scholar
  24. 24.
    Knudsen, L.R.: Truncated and higher order differentials. In: Fast Software Encryption, pp 196–211. Springer (1995)Google Scholar
  25. 25.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP (2), Lecture Notes in Computer Science, vol. 5126, pp 486–498. Springer, Heidelberg (2008)Google Scholar
  26. 26.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications and Cryptography, pp 227–233. Springer (1994)Google Scholar
  27. 27.
    Lobanov, M.: Exact relations between nonlinearity and algebraic immunity. J. Appl. Ind. Math. 3, 367–376 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lupanov, O.: On rectifier and switching-and-rectifier schemes. Dokl. Akad. 30 Nauk SSSR 111, 1171–1174 (1965)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Maitra, S., Sarkar, P.: Maximum nonlinearity of symmetric Boolean functions on odd number of variables. IEEE Trans. Inf. Theory 48(9), 2626–2630 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    McFarland, R.L.: Sub-difference sets of Hadamard difference sets. J. Comb. Theory, Ser. A 54(1), 112–122 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT, Lecture Notes in Computer Science, vol. 434, pp 549–562. Springer (1989)Google Scholar
  32. 32.
    Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press (1996)Google Scholar
  33. 33.
    Nechiporuk, E.I.: On the complexity of schemes in some bases containing nontrivial elements with zero weights (in russian). Problemy Kibernetiki 8, 123–160 (1962)Google Scholar
  34. 34.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO, Lecture Notes in Computer Science, vol. 7417, pp 681–700. Springer, Heidelberg (2012)Google Scholar
  35. 35.
    O’Connor, L., Klapper, A.: Algebraic nonlinearity and its applications to cryptography. J. Cryptol. 7(4), 213–227 (1994)MathSciNetzbMATHGoogle Scholar
  36. 36.
    O’Donnell, R.: Analysis of Boolean Functions. Book draft. Available at http://www.analysisofbooleanfunctions.org (2012)
  37. 37.
    Rodier, F.: Asymptotic nonlinearity of Boolean functions. Des. Codes Cryptography 40(1), 59–70 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Rothaus, O.S.: On “bent” functions. J. Comb. Theory. Ser. A 20(3), 300–305 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Savický, P.: On the bent Boolean functions that are symmetric. Eur. J. Comb. 15(4), 407–410 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Schnorr, C.P.: The multiplicative complexity of Boolean functions. In: Mora, T. (ed.) AAECC, Lecture Notes in Computer Science, vol. 357, pp 45–58. Springer, Heidelberg (1988)Google Scholar
  41. 41.
    Shaltiel, R.: Dispersers for affine sources with sub-polynomial entropy. In: Ostrovsky, R. (ed.) FOCS, pp 247–256. IEEE (2011)Google Scholar
  42. 42.
    Turan, M.S., Peralta, R.: The multiplicative complexity of Boolean functions on four and five variables. In: Proceedings of LightSec’14. Springer (2014)Google Scholar
  43. 43.
    Zhang, X., Pieprzyk, J., Zheng, Y.: On algebraic immunity and annihilators. Inf. Secur. Cryptol.–ICISC 2006, 65–80 (2006)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Zheng, Y., Zhang, X.M., Imai, H.: Restriction, terms and nonlinearity of boolean functions. Theor. Comput. Sci. 226(1-2), 207–223 (1999). doi: 10.1016/S0304-3975(99)00073-0 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • Joan Boyar
    • 1
  • Magnus Gausdal Find
    • 2
  • René Peralta
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark
  2. 2.Information Technology LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations