Cryptography and Communications

, Volume 8, Issue 2, pp 175–189 | Cite as

New open problems related to old conjectures by Helleseth

Article

Abstract

Recently, very interesting results have been obtained concerning the Fourier spectra of power permutations over a finite field. In this note we survey the recent ideas of Aubry, Feng, Katz, and Langevin, and we pose new open problems related to old conjectures proposed by Helleseth in the middle of the seventies.

Keywords

Finite fields Weil sums Exponential sums Cross-correlation M-sequence 

Notes

Acknowledgments

The first author was supported in part by a Research, Scholarship, and Creative Activity Award from California State University, Northridge. The first author was also supported in part by the Institut de Mathématiques de Toulon at Université de Toulon as a visiting professor. The authors thank anonymous reviewers for helpful corrections and suggestions.

References

  1. 1.
    Aubry, Y., Katz, D.J., Langevin, P.: Cyclotomy of Weil sums of binomials (2013) arXiv:1312.3889 [math.NT]
  2. 2.
    Aubry, Y., Langevin, P.: On a conjecture of Helleseth. In: Algebraic informatics, volume 8080 of Lecture Notes in Comput. Sci., pp 113–118. Springer, Heidelberg (2013)Google Scholar
  3. 3.
    Blokhuis, A., Calderbank, A.R.: Unpublished noteGoogle Scholar
  4. 4.
    Calderbank, A.R., McGuire, G., Poonen, B., Rubinstein, M.: On a conjecture of Helleseth regarding pairs of binary m-sequences. IEEE Trans. Inform. Theory 42(3), 988–990 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Charpin, P.: Cyclic codes with few weights and Niho exponents. J. Combin. Theory Ser. A 108(2), 247–259 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Feng, T.: On cyclic codes of length \(2^{2^{r}-1}\) with two zeros whose dual codes have three weights. Des. Codes Cryptogr. 62(3), 253–258 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discrete Math. 16(3), 209–232 (1976)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Katz, D.J.: Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth. J. Combin. Theory Ser. A 119(8), 1644–1659 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Katz, D.J.: Divisibility of Weil sums of binomials (2014) arXiv:1407.7923 [math.NT]
  10. 10.
    Katz, N., Livné, R.: Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3. C. R. Acad. Sci. Paris Sér. I Math. 309(11), 723–726 (1989)MATHGoogle Scholar
  11. 11.
    Kononen, K.P., Rinta-aho, M.J., Väänänen, K.O.: On integer values of Kloosterman sums. IEEE Trans. Inform. Theory 56(8), 4011–4013 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lachaud, G., Wolfmann, J.: Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2. C. R. Acad. Sci. Paris Sér. I Math. 305(20), 881–883 (1987)MathSciNetMATHGoogle Scholar
  13. 13.
    Langevin, P.: Numerical projects page: spectra of power maps (2007). http://langevin.univ-tln.fr/project/spectrum
  14. 14.
    Langevin, P.: Numerical projects page : nice exponents, 2013 and 2015. http://langevin.univ-tln.fr/project/expo

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.California State UniversityNorthridgeUSA
  2. 2.Université de ToulonLa GardeFrance

Personalised recommendations