Advertisement

Cryptography and Communications

, Volume 6, Issue 4, pp 359–369 | Cite as

Prefix partitioned gray codes for particular cross-bifix-free sets

  • Antonio Bernini
  • Stefano Bilotta
  • Renzo Pinzani
  • Ahmad Sabri
  • Vincent Vajnovszki
Article

Abstract

A set of words with the property that no prefix of any word is the suffix of any other word is called cross-bifix-free set. We provide an efficient generating algorithm producing Gray codes for a remarkable family of cross-bifix-free sets.

Keywords

Gray codes Cross-bifix-free sets CAT algorithms q-ary words 

Mathematics Subjects Classification (2010)

68R15 94B15 69P30 

References

  1. 1.
    Bajic, D.: On construction of cross-bifix-free kernel sets. 2nd MCM COST 2100, TD(07)237. Lisbon, Portugal (2007)Google Scholar
  2. 2.
    Bajic, D.: A simple suboptimal construction of cross-bifix-free codes. Crypt. Commun. 6(1), 27–37 (2014)CrossRefzbMATHGoogle Scholar
  3. 3.
    Baril, J., Vajnovszki, V.: Gray code for derangements. Discret. Appl. Math. 140, 207–221 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berstel, J., Perrin, D., Reutenauer, C.: Codes and automata (Encyclopedia of Mathematics and its Applications). Cambridge University Press (2009)Google Scholar
  5. 5.
    Bilotta, S., Pergola, E., Pinzani, R.: A new approach to cross-bifix-free sets. IEEE Trans. Inf. Theory 58, 4058–4063 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chee, Y.M., Kiah, H.M., Purkayastha, P., Wang, C.: Cross-bifix-free codes within a constant factor of optimality. IEEE Trans. Inf. Theory 59, 4668–4674 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Er, M.C.: On generating the N-ary reflected Gray code. IEEE Trans. Comput. 33, 739–741 (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gray, F.: Pulse code communication. U.S. Patent 2(632), 058 (1953)Google Scholar
  10. 10.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Joichi, J., White, D.E., Williamson, S.G.: Combinatorial gray codes. Siam J. Comput. 9, 130–141 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Knuth, D.E.: The art of computer programming. Vol. 3, sorting and searching. Addison-Wesley, Reading, MA (1973)Google Scholar
  13. 13.
    Levesque, C.: On m-th order linear recurrences. Fibonacci Quart. 23, 290–293 (1985)MathSciNetzbMATHGoogle Scholar
  14. 14.
    de Lind van Wijngaarden, A.J., Willink, T.J.: Frame synchronization using distributed sequences. IEEE Trans. Commun. 48, 2127–2138 (2000)CrossRefGoogle Scholar
  15. 15.
    Ludman, J.E.: Gray code generation for MPSK signals. IEEE Trans. Commun. 29, 1519–1522 (1981)CrossRefGoogle Scholar
  16. 16.
    Johnson, S.M.: Generation of permutations by adjacent transpositions. Math. Comp. 17, 282–285 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Nielsen, P.T.: A note on Bifix-free sequences. IEEE Trans. Inf. Theory 29, 704–706 (1973)CrossRefGoogle Scholar
  18. 18.
    Shork, M.: The r-generalized Fibonacci numbers and Polynomial coefficients. Int. J. Contemp. Math. Sci. 3, 1157–1163 (2008)MathSciNetGoogle Scholar
  19. 19.
    Vajnovszki, V.: Gray visiting Motzkin. Acta Informatica 38, 793–811 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Walsh, T.: Gray codes for involutions. J. Comb. Math. Comb. Comput. 36, 95–118 (2001)zbMATHGoogle Scholar
  21. 21.
    Walsh, T.: Generating gray codes in O(1) worst-case time per word. Lect. Notes Comput. Sci 2731, 73–88 (2003)CrossRefGoogle Scholar
  22. 22.
    Williamson, S.G.: Combinatorics for computer science. Computer Science Press, Maryland (1985)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Antonio Bernini
    • 1
  • Stefano Bilotta
    • 1
  • Renzo Pinzani
    • 1
  • Ahmad Sabri
    • 2
  • Vincent Vajnovszki
    • 2
  1. 1.Dipartimento di Matematica e Informatica “U. Dini”Universitá degli Studi di FirenzeFirenzeItaly
  2. 2.LE2IUniversité de BourgogneDijon CedexFrance

Personalised recommendations