Cryptography and Communications

, Volume 1, Issue 1, pp 117–133

How to determine linear complexity and k-error linear complexity in some classes of linear recurring sequences

Article

Abstract

Several fast algorithms for the determination of the linear complexity of d-periodic sequences over a finite field \({\mathbb F}_q\), i.e. sequences with characteristic polynomial f(x) = xd − 1, have been proposed in the literature. In this contribution fast algorithms for determining the linear complexity of binary sequences with characteristic polynomial f(x) = (x − 1)d for an arbitrary positive integer d, and \(f(x) = (x^2+x+1)^{2^v}\) are presented. The result is then utilized to establish a fast algorithm for determining the k-error linear complexity of binary sequences with characteristic polynomial \((x^2+x+1)^{2^v}\).

Keywords

Linear complexity k-error linear complexity Algorithm Linear recurring sequences Stream cipher 

Mathematics Subject Classifications (2000)

94A55 94A60 11B50 

References

  1. 1.
    Chen, H.: Fast algorithms for determining the linear complexity of sequences over GF(p m) with period 2t n. IEEE Trans. Inf. Theory 51, 1854–1856 (2005)CrossRefGoogle Scholar
  2. 2.
    Chen, H.: Reducing the computation of linear complexities of periodic sequences over GF(p m). IEEE Trans. Inf. Theory 52, 5537–5539 (2006)CrossRefGoogle Scholar
  3. 3.
    Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. North-Holland, Amsterdam (1998)MATHGoogle Scholar
  4. 4.
    Dai, Z.D., Yang, J.H.: Linear complexity of periodically repeated random sequences. In: Davies, D.W. (ed.) Advances in Cryptology – EUROCRYPT’91, Lecture Notes in Computer Science, vol. 547, pp. 168–175. Springer, Berlin (1991)Google Scholar
  5. 5.
    Ding, C.: A fast algorithm for the determination of linear complexity of sequences over GF(p m) with period p n. In: The Stability Theory of Stream Ciphers, Lecture Notes in Computer Science, vol. 561, pp. 141–144. Springer, Berlin (1991)Google Scholar
  6. 6.
    Ding, C., Xiao, G., Shan, W.: The stability theory of stream ciphers. In: Lecture Notes in Computer Science, vol. 561. Springer, Berlin (1991)Google Scholar
  7. 7.
    Fu, F.W., Niederreiter, H., Su, M.: The expectation and variance of the joint linear complexity of random periodic multisequences. J. Complex. 21, 804–822 (2005)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Fu, F.W., Niederreiter, H., Özbudak, F.: On the joint linear complexity of linear recurring multisequences. In: Li, Y.Q., et al. (eds.) Proceedings of the Int. Workshop on Coding and Cryptology, pp. 125–142. Fujian, China, June 2007 (2008)Google Scholar
  9. 9.
    Games, R.A., Chan, A.H.: A fast algorithm for determining the complexity of a binary sequence with period 2n. IEEE Trans. Inf. Theory 29, 144–146 (1983)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Lauder, G.B., Paterson, K.G.: Computing the linear complexity spectrum of a binary sequence of period 2n. IEEE Trans. Inf. Theory 49, 273–280 (2003)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  12. 12.
    Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19, 101–110 (1973)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Meidl, W.: Reducing the calculation of the linear complexity of u2v-periodic binary sequences to Games-Chan algorithm. Designs Codes Cryptogr. 46, 57–65 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complex. 18, 87–103 (2002)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inf. Theory 48, 2817–2825 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Meidl, W., Niederreiter, H.: The expected value of the joint linear complexity of periodic multisequences. J. Complex. 19, 61–72 (2003)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Niederreiter, H.: Sequences with almost perfect linear complexity profile. In: Chaum, D., Price, W.L. (eds.) Advances in Cryptology—Proceedings of EUROCRYPT 1987, Lecture Notes in Computer Science, vol. 304, pp. 37–51. Springer, Berlin (1988)Google Scholar
  18. 18.
    Salagean, A.: On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two. IEEE Trans. Inf. Theory 51, 1145–1150 (2005)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Trans. Inf. Theory 39, 1398–1401 (1993)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Xiao, G., Wei, S., Lam, K.Y., Imamura, K.: A fast algorithm for determining the linear complexity of a sequence with period p n over GF(q). IEEE Trans. Inf. Theory 46, 2203–2206 (2000)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Xiao, G., Wei, S.: Fast algorithms for determining the linear complexity of period sequences. In: Menezes, A., Sarkar, P. (eds.) Progress in Cryptology—INDOCRYPT 2002, Lecture Notes in Computer Science, vol. 2551, pp. 12–21. Springer, Berlin (2002)Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  1. 1.Sabancı University, MDBFİstanbulTurkey

Personalised recommendations