Advertisement

An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer

Abstract

The previous reports have established a strong link between diet, lifestyle, and gut microbiota population with the onset of the colorectal cancer (CRC). Administration of probiotics has become a particular interest in prevention and treatment of CRC. As potential dietary complements, probiotics might be able to lower the risk of CRC and manage the safety of traditional cancer therapies such as surgery, radiation therapy, and chemotherapy. This review investigates the promising effects of probiotics as biotherapeutics, with due attention to possible clinical application of yeast probiotics in prevention and treatment of CRC. In addition, various underlying anti-cancer mechanisms are covered here based on scientific evidence and findings from numerous experimental studies. Application of probiotics as biotherapeutics in CRC, however, needs to be approved by human clinical trials. It is of prime concern, to find potential probiotic strains, effective doses for administrations and regimes, and molecular mechanisms involved in prevention and treatment.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

  1. 1.

    Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 2018;124(13):2785–2800.

  2. 2.

    Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2010;13(5):569–73. https://doi.org/10.1097/MCO.0b013e32833b648e.

  3. 3.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262.

  4. 4.

    Silva FC, Valentin MD, Ferreira Fde O, Carraro DM, Rossi BM. Mismatch repair genes in Lynch syndrome: a review. Sao Paulo Med J. 2009;127(1):46–51.

  5. 5.

    Sheridan C. Amgen punts on deCODE’s genetics know-how. Nat Biotechnol. 2013;31(2):87–8. https://doi.org/10.1038/nbt0213-87.

  6. 6.

    Ghaemmaghami S, Hedayati M, Mohaddes SM, Mohammadi MG, Rahmati M, Zarghami N. Visfatin proliferative effect on HCT-116 colorectal cancer cell line. Adv Environ Biol. 2014;8(9):55–60.

  7. 7.

    Bagheri R, Sanaat Z, Zarghami N. Synergistic effect of free and nano-encapsulated chrysin-curcumin on inhibition of hTERT gene expression in SW480 colorectal cancer cell line. Drug Res. 2018;68(06):335–43.

  8. 8.

    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506.

  9. 9.

    Smith IM, Baker A, Arneborg N, Jespersen L. Non‐S accharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium. Lett Appl Microbiol. 2015;61(5):491–7.

  10. 10.

    Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, et al. Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 5: suitability of taxonomic units notified to EFSA until september 2016. EFSA J. 2017;15(3):1–178.

  11. 11.

    Saber A, Alipour B, Faghfoori Z, Yari KA. Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol. 2017;43(1):96–115.

  12. 12.

    Moslehi-Jenabian S, Lindegaard L, Jespersen L. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients. 2010;2(4):449–73.

  13. 13.

    Pontier-Bres R, Munro P, Boyer L, Anty R, Imbert V, Terciolo C, et al. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract. PLoS ONE. 2014;9(8):e103069.

  14. 14.

    Bisson J-F, Hidalgo S, Rozan P, Messaoudi M. Preventive effects of different probiotic formulations on travelers’ diarrhea model in wistar rats. Dig Dis Sci. 2010;55(4):911–9.

  15. 15.

    Smith IM, Christensen JE, Arneborg N, Jespersen L. Yeast modulation of human dendritic cell cytokine secretion: an in vitro study. PLoS ONE. 2014;9(5):e96595.

  16. 16.

    Bin Z, Ya-Zheng X, Zhao-Hui D, Bo C, Li-Rong J, Vandenplas Y. The efficacy of Saccharomyces boulardii CNCM I-745 in addition to standard Helicobacter pylori eradication treatment in children. Pediatr Gastroenterol Hepatol Nutr. 2015;18(1):17–22.

  17. 17.

    Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, LaMont JT, et al. Saccharomyces boulardii stimulates intestinal immunoglobulin a immune response to clostridium difficiletoxin a in mice. Infect Immun. 2001;69(4):2762–5.

  18. 18.

    McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol. 2010;16(18):2202.

  19. 19.

    Kogani G, Pajtinka M, Babincova M, Miadokova E, Rauko P, Slamenova D, et al. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Minireview. Neoplasma. 2008;55(5):387.

  20. 20.

    Gedek B. Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses. 1999;42(4):261–4.

  21. 21.

    Martins FS, Vieira AT, Elian SD, Arantes RM, Tiago FC, Sousa LP, et al. Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect. 2013;15(4):270–9.

  22. 22.

    Chen X, Kokkotou EG, Mustafa N, Bhaskar KR, Sougioultzis S, O’Brien M, et al. Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo, and protects against Clostridium difficile toxin A-induced enteritis. J Biol Chem. 2006;281(34):24449–54.

  23. 23.

    Holzapfel WH, Schillinger U. Introduction to pre-and probiotics. Food Res Int. 2002;35(2–3):109–16.

  24. 24.

    Bromberg-White JL, Andersen NJ, Duesbery NS. MEK genomics in development and disease. Brief Funct Genom. 2012;11(4):300–10.

  25. 25.

    Swidsinski A, Loening–Baucke V, Verstraelen H, Osowska S, Doerffel Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology. 2008;135(2):568–79.

  26. 26.

    Yu A-Q, Li L. The potential role of probiotics in cancer prevention and treatment. Nutr Cancer. 2016;68(4):535–44.

  27. 27.

    Chiu Y-H, Hsieh Y-J, Liao K-W, Peng K-C. Preferential promotion of apoptosis of monocytes by Lactobacillus casei rhamnosus soluble factors. Clin Nutr. 2010;29(1):131–40.

  28. 28.

    Chong ESL. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol. 2014;30(2):351–74.

  29. 29.

    Zhong L, Zhang X, Covasa M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol. 2014;20(24):7878.

  30. 30.

    Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol. 2016;22(2):501.

  31. 31.

    Koi M, Okita Y, Carethers JM. Fusobacterium nucleatum infection in colorectal cancer: linking inflammation, DNA mismatch repair and genetic and epigenetic alterations. J Anus Rectum Colon. 2018;2(2):37–46.

  32. 32.

    Li S, Konstantinov SR, Smits R, Peppelenbosch MP. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol Med. 2017;23(1):18–30.

  33. 33.

    Zackular JP, Baxter NT, Chen GY, Schloss PD. Manipulation of the gut microbiota reveals role in colon tumorigenesis. mSphere. 2016;1(1):e00001–e00015.

  34. 34.

    Jurjus A, Eid A, Al Kattar S, Zeenny MN, Gerges-Geagea A, Haydar H, et al. Inflammatory bowel disease, colorectal cancer and type 2 diabetes mellitus: the links. BBA Clin. 2016;5:16–24.

  35. 35.

    Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol. 2016;22(2):557.

  36. 36.

    Mumy KL, Chen X, Kelly CP, McCormick BA. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am J Physiol-Gastrointest Liver Physiol. 2008;294(3):G599–G609.

  37. 37.

    Chen X, Fruehauf J, Goldsmith JD, Xu H, Katchar KK, Koon HW, et al. Saccharomyces boulardii inhibits EGF receptor signaling and intestinal tumor growth in Apcmin mice. Gastroenterology. 2009;137(3):914–23.

  38. 38.

    Chen X, Yang G, Song J-H, Xu H, Li D, Goldsmith J, et al. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS ONE. 2013;8(5):e64227.

  39. 39.

    Mirone G, Shukla A, Marfe G. Signaling mechanisms of resistance to EGFR-and anti-angiogenic inhibitors cancer. Crit Rev Oncol Hematol. 2016;97:85–95.

  40. 40.

    Ghoneum M, Gollapudi S. Synergistic role of arabinoxylan rice bran (MGN-3/Biobran) in S. cerevisiae-induced apoptosis of monolayer breast cancer MCF-7 cells. Anticancer Res. 2005;25(6B):4187–96.

  41. 41.

    Ghoneum M, El-Din NKB, Noaman E, Tolentino L. Saccharomyces cerevisiae, the baker’s yeast, suppresses the growth of Ehrlich carcinoma-bearing mice. Cancer Immunol Immunother. 2008;57(4):581–92.

  42. 42.

    Collier C, Carroll J, Ballou M, Starkey J, Sparks J. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J Anim Sci. 2011;89(1):52–8.

  43. 43.

    Dalmasso G, Loubat A, Dahan S, Calle G, Rampal P, Czerucka D. Saccharomyces boulardii prevents TNF-α-induced apoptosis in EHEC-infected T84 cells. Res Microbiol. 2006;157(5):456–65.

  44. 44.

    Dahan S, Dalmasso G, Imbert V, Peyron JF, Rampal P, Czerucka D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect Immun. 2003;71(2):766–73.

  45. 45.

    Pothoulakis C. Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment Pharmacol Ther. 2009;30(8):826–33. https://doi.org/10.1111/j.1365-2036.2009.04102.x.

  46. 46.

    Buts JP, De Keyser N. Transduction pathways regulating the trophic effects of Saccharomyces boulardii in rat intestinal mucosa. Scand J Gastroenterol. 2010;45(2):175–85. https://doi.org/10.3109/00365520903453141.

  47. 47.

    Shamekhi S, Abdolalizadeh J, Ostadrahimi A, Mohammadi SA, Barzegari A, Lotfi H, et al. Apoptotic effect of Saccharomyces cerevisiae on human colon cancer SW480 cells by regulation of Akt/NF-kB signaling pathway. Probiotics Antimicrob Proteins. 2019. https://doi.org/10.1007/s12602-019-09528-7.

  48. 48.

    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.

  49. 49.

    Kao A-P, Wang K-H, Long C-Y, Chai C-Y, Tsai C-F, Hsieh T-H, et al. Interleukin-1β induces cyclooxygenase-2 expression and promotes the invasive ability of human mesenchymal stem cells derived from ovarian endometrioma. Fertil Steril. 2011;96(3):678–84.

  50. 50.

    Sougioultzis S, Simeonidis S, Bhaskar KR, Chen X, Anton PM, Keates S, et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem Biophys Res Commun. 2006;343(1):69–766.

  51. 51.

    Van der Aa Kühle A, Skovgaard K, Jespersen L. In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. Int J Food Microbiol. 2005;101(1):29–39.

  52. 52.

    Kamada N, Seo S-U, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321.

  53. 53.

    Yeretssian G. Effector functions of NLRs in the intestine: innate sensing, cell death, and disease. Immunol Res. 2012;54(1–3):25–36.

  54. 54.

    Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231.

  55. 55.

    Martins FS, Elian SD, Vieira AT, Tiago FC, Martins AK, Silva FC, et al. Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int J Med Microbiol. 2011;301(4):359–64.

  56. 56.

    Martins AK, Martins FS, Gomes DA, Elian SD, Vieira AT, Teixeira MM, et al. Evaluation of in vitro antagonism and of in vivo immune modulation and protection against pathogenic experimental challenge of two probiotic strains of Bifidobacterium animalis var. lactis. Arch Microbiol. 2010;192(12):995–1003.

  57. 57.

    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860.

  58. 58.

    Greten FR, Eckmann L, Greten TF, Park JM, Li Z-W, Egan LJ, et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–96.

  59. 59.

    Weston S, Parish C. Modification of lymphocyte migration by mannans and phosphomannans. Different carbohydrate structures control entry of lymphocytes into spleen and lymph nodes. J Immunol. 1991;146(12):4180–6.

  60. 60.

    Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, et al. A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J Clin Investig. 1999;104(4):383–9.

  61. 61.

    Foligné B, Dewulf J, Vandekerckove P, Pignède G, Pot B. Probiotic yeasts: anti-inflammatory potential of various non-pathogenic strains in experimental colitis in mice. World J Gastroenterol. 2010;16(17):2134.

  62. 62.

    Jawhara S, Poulain D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med Mycol. 2007;45(8):691–700.

  63. 63.

    Tiago F, Porto B, Ribeiro N, Moreira L, Arantes R, Vieira A, et al. Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease. Benef Microbes. 2015;6(6):807–15.

  64. 64.

    Lee SK, Kim HJ, Chi SG, Jang JY, Nam KD, Kim NH, et al. Saccharomyces boulardii activates expression of peroxisome proliferator-activated receptor-gamma in HT-29 cells. Korean J Gastroenterol Taehan Sohwagi Hakhoe Chi. 2005;45(5):328–34.

  65. 65.

    Hjortmo SB, Hellström AM, Andlid TA. Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res. 2008;8(5):781–7.

  66. 66.

    Patring JD, Hjortmo SB, Jastrebova JA, Svensson UK, Andlid TA, Jägerstad IM. Characterization and quantification of folates produced by yeast strains isolated from kefir granules. Eur Food Res Technol. 2006;223(5):633–7.

  67. 67.

    Patring JD, Jastrebova JA, Hjortmo SB, Andlid TA, Jägerstad IM. Development of a simplified method for the determination of folates in baker's yeast by HPLC with ultraviolet and fluorescence detection. J Agric Food Chem. 2005;53(7):2406–11.

  68. 68.

    Choi S-W, Mason JB. Folate and carcinogenesis: an integrated scheme1–3. J Nutr. 2000;130(2):129–32.

  69. 69.

    Thakur S, Thakur SD, Wani NA, Kaur J. Reduced expression of folate transporters in kidney of a rat model of folate oversupplementation. Genes Nutr. 2014;9(1):369.

  70. 70.

    Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol. 2014;20(20):6055.

  71. 71.

    Takata Y, Shrubsole MJ, Li H, Cai Q, Gao J, Wagner C, et al. Plasma folate concentrations and colorectal cancer risk: a case-control study nested within the Shanghai Men's Health Study. Int J Cancer. 2014;135(9):2191–8.

  72. 72.

    Liu Z, Choi SW, Crott JW, Smith DE, Mason JB. Multiple B-vitamin inadequacy amplifies alterations induced by folate depletion in p53 expression and its downstream effector MDM2. Int J Cancer. 2008;123(3):519–25.

  73. 73.

    Vetvicka V, Volny T, Saraswat-Ohri S, Vashishta A, Vancikova Z, Vetvickova J. Glucan and resveratrol complex–possible synergistic effects on immune system. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2007;151(1):41–6.

  74. 74.

    Jabber AJ. The effect of beta glucan extract of Saccharomyces cerevieses on cancer cell growth in vitro. Iraqi J Cancer Med Genet. 2018;5(1):53–8.

  75. 75.

    Javmen A, Grigiškis S, Gliebutė R. β-glucan extraction from Saccharomyces cerevisiae yeast using Actinomyces rutgersensis 88 yeast lyzing enzymatic complex. Biologija. 2012;58(2):51–9.

  76. 76.

    Song HS, Moon K-Y. In vitro antioxidant activity profiles of β-glucans isolated from yeast Saccharomyces cerevisiae and mutant Saccharomyces cerevisiae IS2. Food Sci Biotechnol. 2006;15(3):437–40.

  77. 77.

    Novak M, Vetvicka V. Glucans as biological response modifiers. Endocr Metab Immune Disord-Drug Targets. 2009;9(1):67–75.

  78. 78.

    Carpenter K, Breslin W, Davidson T, Adams A, McFarlin B. Baker’s yeast β-glucan supplementation increases monocytes and cytokines post-exercise: implications for infection risk? Br J Nutr. 2013;109(3):478–86.

  79. 79.

    Zhang M, Kim JA, Huang AY-C. Optimizing tumor microenvironment for cancer immunotherapy: β-glucan-based nanoparticles. Front Immunol. 2018;9:341.

  80. 80.

    Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by β-glucans. Physiol Behav. 2008;94(2):276–84.

  81. 81.

    Zhao W, Liu Y, Latta M, Ma W, Wu Z, Chen P. Probiotics database: a potential source of fermented foods. Int J Food Prop. 2019;22(1):198–217.

  82. 82.

    Tao L, Wang B, Zhong Y, Pow SH, Zeng X, Qin C, et al. Database and bioinformatics studies of probiotics. J Agric Food Chem. 2017;65(35):7599–606.

  83. 83.

    Fortin O, Aguilar-Uscanga B, Vu KD, Salmieri S, Lacroix M. Cancer chemopreventive, antiproliferative, and superoxide anion scavenging properties of Kluyveromyces marxianus and Saccharomyces cerevisiae var. boulardii cell wall components. Nutr Cancer. 2018;70(1):83–96.

  84. 84.

    Yoon TJ, Kim TJ, Lee H, Shin KS, Yun YP, Moon WK, et al. Anti-tumor metastatic activity of beta-glucan purified from mutated Saccharomyces cerevisiae. Int Immunopharmacol. 2008;8(1):36–42. https://doi.org/10.1016/j.intimp.2007.10.005.

  85. 85.

    Kim MJ, Hong SY, Kim SK, Cheong C, Park HJ, Chun HK, et al. β-Glucan enhanced apoptosis in human colon cancer cells SNU-C4. Nutr Res Pract. 2009;3(3):180–4. https://doi.org/10.4162/nrp.2009.3.3.180.

  86. 86.

    Magnani M, Castro-Gomez RH, Nobrega Aoki M, Pereira Gregório E, Libos F, Ehara Watanabe MA. Effects of carboxymethyl-glucan from Saccharomyces cerevisiae on the peripheral blood cells of patients with advanced prostate cancer. Exp Ther Med. 2010;1(5):859–62.

  87. 87.

    Liu F, Wang Z, Liu J, Li W. Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae. Int J Biol Macromol. 2018;115:572–9.

  88. 88.

    Kotzampassi K, Stavrou G, Damoraki G, Georgitsi M, Basdanis G, Tsaousi G, et al. A four-probiotics regimen reduces postoperative complications after colorectal surgery: a randomized, double-blind, placebo-controlled study. World J Surg. 2015;39(11):2776–833.

  89. 89.

    Consoli MLD, da Silva RS, Nicoli JR, Bruña-Romero O, da Silva RG, de Vasconcelos GS, et al. Randomized clinical trial: impact of oral administration of Saccharomyces boulardii on gene expression of intestinal cytokines in patients undergoing colon resection. J Parenter Enter Nutr. 2016;40(8):1114–21.

  90. 90.

    Williams NT. Probiotics. Am J Health Syst Pharm. 2010;67(6):449–58.

  91. 91.

    Kothari D, Patel S, Kim S-K. Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother. 2019;111:537–47.

  92. 92.

    Saber A, Alipour B, Faghfoori Z, Khosroushahi AY. Secretion metabolites of dairy Kluyveromyces marxianus AS41 isolated as probiotic, induces apoptosis in different human cancer cell lines and exhibit anti-pathogenic effects. J Funct Foods. 2017;34:408–21.

  93. 93.

    Saber A, Alipour B, Faghfoori Z, Khosroushahi AY. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines. Nutr Res. 2017;41:36–46.

  94. 94.

    Rajan T, Benluvankar V, Vincent S. Saccharomyces cerevisiae-induced apoptosis of monolayer cervical cancer cells. Asian J Pharm Clin Res. 2017;10(8):63–6.

  95. 95.

    Fortin O, Aguilar-Uscanga BR, Vu KD, Salmieri S, Lacroix M. Effect of Saccharomyces boulardii cell wall extracts on colon cancer prevention in male F344 rats treated with 1, 2-dimethylhydrazine. Nutr Cancer. 2018;70(4):632–42.

  96. 96.

    Mo L, Chen Y, Li W, Guo S, Wang X, An H, et al. Anti-tumor effects of (1→3)-β-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice. Int J Biol Macromol. 2017;95:385–92.

  97. 97.

    Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.

  98. 98.

    Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, et al. Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut. 2014;63(12):1932–42.

  99. 99.

    Kuboniwa M, Hasegawa Y, Mao S, Shizukuishi S, Amano A, Lamont RJ, et al. P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect. 2008;10(2):122–8.

  100. 100.

    Kara I, Yildirim F, Ozgen O, Erganis S, Aydogdu M, Dizbay M, et al. Saccharomyces cerevisiae fungemia after probiotic treatment in an intensive care unit patient. Journal Mycol Med. 2018;28(1):218–21. https://doi.org/10.1016/j.mycmed.2017.09.003.

  101. 101.

    Eren Z, Gurol Y, Sonmezoglu M, Eren HS, Celik G, Kantarci G. Saccharomyces cerevisiae fungemia in an elderly patient following probiotic treatment. Mikrobiyol Bul. 2014;48(2):351–5. https://doi.org/10.5578/mb.6970.

  102. 102.

    Cesaro S, Chinello P, Rossi L, Zanesco L. Saccharomyces cerevisiae fungemia in a neutropenic patient treated with Saccharomyces boulardii. Support Care Cancer. 2000;8(6):504–5. https://doi.org/10.1007/s005200000123.

  103. 103.

    Lestin F, Pertschy A, Rimek D. Fungemia after oral treatment with Saccharomyces boulardii in a patient with multiple comorbidities. Dtsch Med Wochenschr (1946). 2003;128(48):2531–3. https://doi.org/10.1055/s-2003-44948.

  104. 104.

    Landaburu MF, Lopez Daneri GA, Relloso S, Zarlenga LJ, Vinante MA, Mujica MT. Fungemia following Saccharomyces cerevisiae var. boulardii probiotic treatment in an elderly patient. Rev Argent Microbiol. 2019. https://doi.org/10.1016/j.ram.2019.04.002.

  105. 105.

    Henry S, D'Hondt L, Andre M, Holemans X, Canon JL. Saccharomyces cerevisiae fungemia in a head and neck cancer patient: a case report and review of the literature. Acta Clin Belg. 2004;59(4):220–2. https://doi.org/10.1179/acb.2004.032.

  106. 106.

    Hennequin C, Kauffmann-Lacroix C, Jobert A, Viard J, Ricour C, Jacquemin J, et al. Possible role of catheters in Saccharomyces boulardii fungemia. Eur J Clin Microbiol Infect Dis. 2000;19(1):16–20.

  107. 107.

    Riquelme AJ, Calvo MA, Guzmán AM, Depix MS, García P, Pérez C, et al. Saccharomyces cerevisiae fungemia after Saccharomyces boulardii treatment in immunocompromised patients. J Clin Gastroenterol. 2003;36(1):41–3.

  108. 108.

    Ohishi A, Takahashi S, Ito Y, Ohishi Y, Tsukamoto K, Nanba Y, et al. Bifidobacterium septicemia associated with postoperative probiotic therapy in a neonate with omphalocele. J Pediatr. 2010;156(4):679–81.

  109. 109.

    Molinaro M, Aiazzi M, La AT, Cini E, Banfi R. Lactobacillus rhamnosus sepsis in a preterm infant associated with probiotic integrator use: a case report. Recent Prog Med. 2016;107(9):485–6.

  110. 110.

    Naqvi S, Nagendra V, Hofmeyr A. Probiotic related Lactobacillus rhamnosus endocarditis in a patient with liver cirrhosis. IDCases. 2018;13:e00439.

  111. 111.

    Sherid M, Samo S, Sulaiman S, Husein H, Sifuentes H, Sridhar S. Liver abscess and bacteremia caused by lactobacillus: role of probiotics? Case report and review of the literature. BMC Gastroenterol. 2016;16(1):138.

  112. 112.

    Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2008;371(9613):651–9. https://doi.org/10.1016/s0140-6736(08)60207-x.

Download references

Acknowledgements

This is a report of database from Ph.D. thesis of S. Shamekhi registered in Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (Grant no: 5/71/1228, Thesis no: 95/4-1/2).

Author information

Correspondence to N. Zarghami.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamekhi, S., Lotfi, H., Abdolalizadeh, J. et al. An overview of yeast probiotics as cancer biotherapeutics: possible clinical application in colorectal cancer. Clin Transl Oncol (2020). https://doi.org/10.1007/s12094-019-02270-0

Download citation

Keywords

  • Colorectal cancer
  • Molecular mechanisms
  • Probiotics
  • Yeasts