Advertisement

Central nervous system ependymoma: clinical implications of the new molecular classification, treatment guidelines and controversial issues

  • P. D. Delgado-LópezEmail author
  • E. M. Corrales-García
  • E. Alonso-García
  • R. García-Leal
  • R. González-Rodrigálvarez
  • E. Araus-Galdós
  • J. Martín-Alonso
Review Article

Abstract

Ependymoma is an uncommon neuroepithelial tumor that may arise anywhere within the neuroaxis, both in children and in adults. It has been classically graded upon histopathological features, yet with limited clinical utility. Recently, DNA methylation profiling has provided a novel classification of ependymoma in nine molecular subgroups. This stratification method harbors prognostic value with supratentorial RELA-fusion and posterior fossa group A tumors showing a significantly shorter survival compared to the rest. Currently, the treatment of choice involves maximal safe resection and, in cases of residual disease, adjuvant conformal radiotherapy. Second-look surgery is also a feasible and recommended option for incompletely resected tumors. The role of chemotherapy is not yet established and can be considered in infants and children with relapsing disease or prior to re-intervention. Although targeted agents do not seem to play a role as adjuvant therapy, they are currently being tested for recurrent disease.

Keywords

Ependymoma Resection Radiotherapy DNA profile Chemotherapy Prognosis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Individual patients cannot be identified from the radiographic imaging examples provided in this paper.

Informed consent

No informed consent was applicable for the preparation of this review.

References

  1. 1.
    Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8(4):323–35.Google Scholar
  2. 2.
    Jung TY, Jung S, Kook H, Baek HJ. Treatment decisions of World Health Organization Grade II and III ependymomas in molecular era. J Korean Neurosurg Soc. 2018;61(3):312–8.  https://doi.org/10.3340/jkns.2018.0003 (Epub 2018 May 1).Google Scholar
  3. 3.
    Laviv Y, Germano IM, Mahadevan A, Kasper EM. Surgery for posterior fossa ependymomas in adults. J Neurosurg Sci. 2018;62(1):63–70.  https://doi.org/10.23736/S0390-5616.17.04190-X (Epub 2017 Sep 22).Google Scholar
  4. 4.
    Gerstner ER, Pajtler KW. Ependymoma. Semin Neurol. 2018;38(1):104–11.  https://doi.org/10.1055/s-0038-1636503 (Epub 2018 Mar 16).Google Scholar
  5. 5.
    Purdy E, Johnston DL, Bartels U, Fryer C, Carret AS, Crooks B, et al. Ependymoma in children under the age of 3 years: a report from the Canadian pediatric brain tumour consortium. J Neurooncol. 2014;117(2):359–64.  https://doi.org/10.1007/s11060-014-1396-3 (Epub 2014 Feb 16).Google Scholar
  6. 6.
    Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across All CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43.  https://doi.org/10.1016/j.ccell.2015.04.002.Google Scholar
  7. 7.
    Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16(Suppl 4):iv1–63.  https://doi.org/10.1093/neuonc/nou223.Google Scholar
  8. 8.
    Pajtler KW, Mack SC, Ramaswamy V, Smith CA, Witt H, Smith A, et al. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol. 2017;133(1):5–12.  https://doi.org/10.1007/s00401-016-1643-0 (Epub 2016 Nov 17).Google Scholar
  9. 9.
    Sartor EA, Wen PY. Adjuvant treatments for ependymomas. J Neurosurg Sci. 2018;62(1):71–7.  https://doi.org/10.23736/S0390-5616.17.04211-4 (Epub 2017 Sep 22).Google Scholar
  10. 10.
    Khatua S, Ramaswamy V, Bouffet E. Current therapy and the evolving molecular landscape of paediatric ependymoma. Eur J Cancer. 2017;70:34–41.  https://doi.org/10.1016/j.ejca.2016.10.013 (Epub 2016 Nov 18).Google Scholar
  11. 11.
    Bouffet E, Tabori U, Huang A, Bartels U. Ependymoma: lessons from the past, prospects for the future. Childs Nerv Syst. 2009;25(11):1383–4.  https://doi.org/10.1007/s00381-009-0915-6 (Author reply 1385, Epub 2009 Jun 27).Google Scholar
  12. 12.
    Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T, et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed. 2011;31(10):7.  https://doi.org/10.1186/1477-5751-10-7.Google Scholar
  13. 13.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.  https://doi.org/10.1007/s00401-016-1545-1 (Epub 2016 May 9).Google Scholar
  14. 14.
    Chavali P, Rao S, Palavalasa S, Bevinahalli N, Muthane YTC, Sadashiva N, et al. L1CAM immunopositivity in anaplastic supratentorial ependymomas: correlation with clinical and histological parameters. Int J Surg Pathol. 2018;1:1–9.  https://doi.org/10.1177/1066896918800812 (Epub ahead of print).Google Scholar
  15. 15.
    Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature. 2014;506(7489):451–5.  https://doi.org/10.1038/nature13109 (Epub 2014 Feb 19).Google Scholar
  16. 16.
    Leeper H, Felicella MM, Walbert T. Recent advances in the classification and treatment of ependymomas. Curr Treat Options Oncol. 2017;18:55.  https://doi.org/10.1007/s11864-017-0496-7.Google Scholar
  17. 17.
    Fassett DR, Pingree J, Kestle JR. The high incidence of tumor dissemination in myxopapillary ependymoma in pediatric patients. Report of five cases and review of the literature. J Neurosurg. 2005;102((1 Suppl)):59–64.Google Scholar
  18. 18.
    Godfraind C. Classification and controversies in pathology of ependymomas. Childs Nerv Syst. 2009;25(10):1185–93.  https://doi.org/10.1007/s00381-008-0804-4 (Epub 2009 Feb 11).Google Scholar
  19. 19.
    Khatami D, Kasper EM, Bhadelia R, Rojas R. Radiologic characteristics of ependymomas: a case-based approach. J Neurosurg Sci. 2018;62(1):38–45.  https://doi.org/10.23736/S0390-5616.17.04151-0 (Epub 2017 Sep 22).Google Scholar
  20. 20.
    Johnson DR, Guerin JB, Giannini C, Morris JM, Eckel LJ, Kaufmann TJ. Updates to the WHO brain tumor classification system: What the radiologist needs to know? Radiographics. 2016;37(7):2164–80.  https://doi.org/10.1148/rg.2017170037 (Epub 2017 Oct 13).Google Scholar
  21. 21.
    Vermuys K, Jeuris W, Vanhoenacker PK, Van Hoe L, D’Haenens P. Best cases from the AFIP: supratentorial ependymoma. Radiographics. 2005;25(2):486–90.Google Scholar
  22. 22.
    Merchant TE. Current clinical challenges in childhood ependymoma: a focused review. J Clin Oncol. 2017;35(21):2364–9.  https://doi.org/10.1200/JCO.2017.73.1265 (Epub 2017 Jun 22).Google Scholar
  23. 23.
    Horn B, Heideman R, Geyer R, Pollack I, Packer R, Goldwein J, et al. A multi-institutional retrospective study of intracranial ependymoma in children: identification of risk factors. J Pediatr Hematol Oncol. 1999;21(3):203–11.Google Scholar
  24. 24.
    Cage TA, Clark AJ, Aranda D, Gupta N, Sun PP, Parsa AT, et al. A systematic review of treatment outcomes in pediatric patients with intracranial ependymomas. J Neurosurg Pediatr. 2013;11(6):673–81.  https://doi.org/10.3171/2013.2.PEDS12345 (Epub 2013 Mar 29).Google Scholar
  25. 25.
    Panwalkar P, Clark J, Ramaswamy V, Hawes D, Yang F, Dunham C, et al. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol. 2017;134(5):705–14.  https://doi.org/10.1007/s00401-017-1752-4 (Epub 2017 Jul 21).Google Scholar
  26. 26.
    Healey EA, Barnes PD, Kupsky WJ, Scott RM, Sallan SE, Black PM, et al. The prognostic significance of postoperative residual tumor in ependymoma. Neurosurgery. 1991;28(5):666–71 (discussion 671–2).Google Scholar
  27. 27.
    Metellus P, Barrie M, Figarella-Branger D, Chinot O, Giorgi R, Gouvernet J, et al. Multicentric French study on adult intracranial ependymomas: prognostic factors analysis and therapeutic considerations from a cohort of 152 patients. Brain. 2007;130(Pt 5):1338–49 (Epub 2007 Apr 19).Google Scholar
  28. 28.
    Paulino AC, Wen BC, Buatti JM, Hussey DH, Zhen WK, Mayr NA, et al. Intracranial ependymomas: an analysis of prognostic factors and patterns of failure. Am J Clin Oncol. 2002;25(2):117–22.Google Scholar
  29. 29.
    Sayegh ET, Aranda D, Kim JM, Oh T, Parsa AT, Oh MC. Prognosis by tumor location in adults with intracranial ependymomas. J Clin Neurosci. 2014;21(12):2096–101.  https://doi.org/10.1016/j.jocn.2014.05.011 (Epub 2014 Jul 15).Google Scholar
  30. 30.
    Vera-Bolanos E, Aldape K, Yuan Y, Wu J, Wani K, Necesito-Reyes MJ, et al. Clinical course and progression-free survival of adult intracranial and spinal ependymoma patients. Neuro Oncol. 2015;17(3):440–7.  https://doi.org/10.1093/neuonc/nou162 (Epub 2014 Aug 13).Google Scholar
  31. 31.
    Ramaswamy V, Hielscher T, Mack SC, Lassaletta A, Lin T, Pajtler KW, et al. Therapeutic impact of cytoreductive surgery and irradiation of posterior fossa ependymoma in the molecular era: a retrospective multicohort analysis. J Clin Oncol. 2016;34(21):2468–77.  https://doi.org/10.1200/JCO.2015.65.7825 (Epub 2016 Jun 6).Google Scholar
  32. 32.
    Godfraind C, Kaczmarska JM, Kocak M, Dalton J, Wright KD, Sanford RA, et al. Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas. Acta Neuropathol. 2012;124(2):247–57.  https://doi.org/10.1007/s00401-012-0981-9 (Epub 2012 Apr 21).Google Scholar
  33. 33.
    Swanson EL, Amdur RJ, Morris CG, Galloway TJ, Marcus RB Jr, Pincus DW, et al. Intracranial ependymomas treated with radiotherapy: long-term results from a single institution. J Neurooncol. 2011;102(3):451–7.  https://doi.org/10.1007/s11060-010-0344-0 (Epub 2010 Aug 13).Google Scholar
  34. 34.
    Merchant TE, Haida T, Wang MH, Finlay JL, Leibel SA. Anaplastic ependymoma: treatment of pediatric patients with or without craniospinal radiation therapy. J Neurosurg. 1997;86(6):943–9.Google Scholar
  35. 35.
    McLaughlin MP, Marcus RB Jr, Buatti JM, McCollough WM, Mickle JP, Kedar A, et al. Ependymoma: results, prognostic factors and treatment recommendations. Int J Radiat Oncol Biol Phys. 1998;40(4):845–50.Google Scholar
  36. 36.
    Schroeder TM, Chintagumpala M, Okcu MF, Chiu JK, Teh BS, Woo SY, et al. Intensity-modulated radiation therapy in childhood ependymoma. Int J Radiat Oncol Biol Phys. 2008;71(4):987–93.  https://doi.org/10.1016/j.ijrobp.2007.11.058 (Epub 2008 Feb 6).Google Scholar
  37. 37.
    Wu J, Armstrong TS, Gilbert MR. Biology and management of ependymomas. Neuro Oncol. 2016;18(7):902–13.  https://doi.org/10.1093/neuonc/now016 (Epub 2016 Mar 28).Google Scholar
  38. 38.
    Merchant TE, Li C, Xiong X, Kun LE, Boop FA, Sanford RA. Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. Lancet Oncol. 2009;10(3):258–66.Google Scholar
  39. 39.
    Macdonald SM, Sethi R, Lavally B, Yeap BY, Marcus KJ, Caruso P, et al. Proton radiotherapy for pediatric central nervous system ependymoma: clinical outcomes for 70 patients. Neuro Oncol. 2013;15(11):1552–9.  https://doi.org/10.1093/neuonc/not121 (Epub 2013 Oct 6).Google Scholar
  40. 40.
    MacDonald SM, Safai S, Trofimov A, Wolfgang J, Fullerton B, Yeap BY, et al. Proton radiotherapy for childhood ependymoma: initial clinical outcomes and dose comparisons. Int J Radiat Oncol Biol Phys. 2008;71(4):979–86.  https://doi.org/10.1016/j.ijrobp.2007.11.065 (Epub 2008 Mar 5).Google Scholar
  41. 41.
    Gunther JR, Sato M, Chintagumpala M, Ketonen L, Jones JY, Allen PK, et al. Imaging changes in pediatric intracranial ependymoma patients treated with proton beam radiation therapy compared to intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93(1):54–63.  https://doi.org/10.1016/j.ijrobp.2015.05.018 (Epub 2015 May 16).Google Scholar
  42. 42.
    Kralik SF, Ho CY, Finke W, Buchsbaum JC, Haskins CP, Shih CS. Radiation necrosis in pediatric patients with brain tumors treated with proton radiotherapy. AJNR Am J Neuroradiol. 2015;36(8):1572–8.  https://doi.org/10.3174/ajnr.A4333 (Epub 2015 Jul 2).Google Scholar
  43. 43.
    Grundy RG, Wilne SA, Weston CL, Robinson K, Lashford LS, Ironside J, et al. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol. 2007;8(8):696–705.Google Scholar
  44. 44.
    Grill J, Le Deley MC, Gambarelli D, Raquin MA, Couanet D, Pierre-Kahn A, et al. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J Clin Oncol. 2001;19(5):1288–96.Google Scholar
  45. 45.
    Venkatramani R, Ji L, Lasky J, Haley K, Judkins A, Zhou S, et al. Outcome of infants and young children with newly diagnosed ependymoma treated on the “Head Start” III prospective clinical trial. J Neurooncol. 2013;113(2):285–91.  https://doi.org/10.1007/s11060-013-1111-9 (Epub 2013 Mar 19).Google Scholar
  46. 46.
    Garvin JH Jr., Selch MT, Holmes E, Berger MS, Finlay JL, Flannery A, et al. Phase II study of pre-irradiation chemotherapy for childhood intracranial ependymoma. Children’s Cancer Group protocol 9942: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;59(7):1183–9.  https://doi.org/10.1002/pbc.24274 (Epub 2012 Sep 4).Google Scholar
  47. 47.
    Foreman NK, Love S, Gill SS, Coakham HB. Second-look surgery for incompletely resected fourth ventricle ependymomas: technical case report. Neurosurgery. 1997;40(4):856–60 (discussion 860).Google Scholar
  48. 48.
    Eaton BR, Chowdhry V, Weaver K, Liu L, Ebb D, MacDonald SM, et al. Use of proton therapy for re-irradiation in pediatric intracranial ependymoma. Radiother Oncol. 2015;116(2):301–8.  https://doi.org/10.1016/j.radonc.2015.07.023 (Epub 2015 Aug 1).Google Scholar
  49. 49.
    Bouffet E, Hawkins CE, Ballourah W, Taylor MD, Bartels UK, Schoenhoff N, et al. Survival benefit for pediatric patients with recurrent ependymoma treated with reirradiation. Int J Radiat Oncol Biol Phys. 2012;83(5):1541–8.  https://doi.org/10.1016/j.ijrobp.2011.10.039 (Epub 2012 Jan 13).Google Scholar
  50. 50.
    Lobón MJ, Bautista F, Riet F, Dhermain F, Canale S, Dufour C, et al. Re-irradiation of recurrent pediatric ependymoma: modalities and outcomes: a twenty-year survey. Springerplus. 2016;5(1):879.  https://doi.org/10.1186/s40064-016-2562-1.eCollection.Google Scholar
  51. 51.
    Amirian ES, Armstrong TS, Aldape KD, Gilbert MR, Scheurer ME. Predictors of survival among pediatric and adult ependymoma cases: a study using surveillance, epidemiology, and end results data from 1973 to 2007. Neuroepidemiology. 2012;39(2):116–24.  https://doi.org/10.1159/000339320 (Epub 2012 Jul 28).Google Scholar
  52. 52.
    Vitanovics D, Bálint K, Hanzély Z, Banczerowski P, Afra D. Ependymoma in adults: surgery, reoperation and radiotherapy for survival. Pathol Oncol Res. 2010;16(1):93–9.  https://doi.org/10.1007/s12253-009-9194-5 (Epub 2009 Aug 30).Google Scholar
  53. 53.
    Guyotat J, Metellus P, Giorgi R, Barrie M, Jouvet A, Fevre-Montange M, et al. Infratentorial ependymomas: prognostic factors and outcome analysis in a multi-center retrospective series of 106 adult patients. Acta Neurochir (Wien). 2009;151(8):947–60.  https://doi.org/10.1007/s00701-009-0417-z (Epub 2009 Jun 5).Google Scholar
  54. 54.
    Metellus P, Guyotat J, Chinot O, Durand A, Barrie M, Giorgi R, et al. Adult intracranial WHO grade II ependymomas: long-term outcome and prognostic factor analysis in a series of 114 patients. Neuro Oncol. 2010;12(9):976–84.  https://doi.org/10.1093/neuonc/noq047 (Epub 2010 May 19).Google Scholar
  55. 55.
    Gramatzki D, Roth P, Felsberg J, Hofer S, Rushing EJ, Hentschel B, et al. Chemotherapy for intracranial ependymoma in adults. BMC Cancer. 2016;23(16):287.  https://doi.org/10.1186/s12885-016-2323-0.Google Scholar
  56. 56.
    Rudà R, Bosa C, Magistrello M, Franchino F, Pellerino A, Fiano V, et al. Temozolomide as salvage treatment for recurrent intracranial ependymomas of the adult: a retrospective study. Neuro Oncol. 2016;18(2):261–8.  https://doi.org/10.1093/neuonc/nov167 (Epub 2015 Aug 30).Google Scholar
  57. 57.
    DeWire M, Fouladi M, Turner DC, Wetmore C, Hawkins C, Jacobs C, et al. An open-label, two-stage, phase II study of bevacizumab and lapatinib in children with recurrent or refractory ependymoma: a collaborative ependymoma research network study (CERN). J Neurooncol. 2015;123(1):85–91.  https://doi.org/10.1007/s11060-015-1764-7 (Epub 2015 Apr 10).Google Scholar
  58. 58.
    Gururangan S, Fangusaro J, Young Poussaint T, Onar-Thomas A, Gilbertson RJ, Vajapeyam S, et al. Lack of efficacy of bevacizumab + irinotecan in cases of pediatric recurrent ependymoma—a pediatric brain tumor consortium study. Neuro Oncol. 2012;14(11):1404–12.  https://doi.org/10.1093/neuonc/nos213 (Epub 2012 Sep 26).Google Scholar
  59. 59.
    Morris KA, Afridi SK, Evans DG, Hensiek AE, McCabe MG, Kellett M, et al. The response of spinal cord ependymomas to bevacizumab in patients with neurofibromatosis Type 2. J Neurosurg Spine. 2017;26(4):474–82.  https://doi.org/10.3171/2016.8.spine16589 (Epub 2016 Dec 16).Google Scholar
  60. 60.
    Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998;4(5):e1.Google Scholar
  61. 61.
    Deletis V, Seidel K, Sala F, Raabe A, Chudy D, Beck J. Intraoperative identification of the corticospinal tract and dorsal column of the spinal cord by electrical stimulation. J Neurol Neurosurg Psychiatry. 2018;89(7):754–61.  https://doi.org/10.1136/jnnp-2017-317172 (Epub 2018 Feb 7).Google Scholar
  62. 62.
    Deletis V, Bueno De Camargo A. Interventional neurophysiological mapping during spinal cord procedures. Stereotact Funct Neurosurg. 2001;77(1–4):25–8.Google Scholar
  63. 63.
    Nair D, Kumaraswamy VM, Braver D, Kilbride RD, Borges LF, Simon MV. Dorsal column mapping via phase reversal method: the refined technique and clinical applications. Neurosurgery. 2014;74:437–46.Google Scholar
  64. 64.
    MacDonald DB, Dong C, Quatrale R, Sala F, Skinner S, Soto F, et al. Recommendations of the International Society of Intraoperative neurophysiology for intraoperative somatosensory evoked potentials. Clin Neurophysiol. 2019;130(1):161–79.  https://doi.org/10.1016/j.clinph.2018.10.008 (Epub 2018 Nov 14).Google Scholar
  65. 65.
    Nuwer MR. New alert criteria for intraoperative somatosensory evoked potential monitoring. Clin Neurophysiol. 2019;130(1):155–6.  https://doi.org/10.1016/j.clinph.2018.11.002 (Epub 2018 Nov 10).Google Scholar
  66. 66.
    Deletis V, Sala F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol. 2008;119(2):248–64 (Epub 2007 Nov 28).Google Scholar
  67. 67.
    Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, et al. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58:1129–43.Google Scholar
  68. 68.
    Prokopienko M, Kunert P, Podgórska A, Marchel A. Surgical treatment of intramedullary ependymomas. Neurol Neurochir Pol. 2017;51(6):439–45.  https://doi.org/10.1016/j.pjnns.2017.06.008 (Epub 2017 Jul 8).Google Scholar
  69. 69.
    Sweeney KJ, Reynolds M, Farrell M, Bolger C. Gross total resection rates of grade II/III intramedullary ependymomas using the surgical strategy of en-bloc resection without intra-operative neurophysiological monitoring. Br J Neurosurg. 2017;31(3):364–8.  https://doi.org/10.1080/02688697.2016.1270419 (Epub 2016 Dec 25).Google Scholar
  70. 70.
    Fouladi M, Park JR, Stewart CF, Gilbertson RJ, Schaiquevich P, Sun J, et al. Pediatric phase I trial and pharmacokinetic study of vorinostat: a Children’s Oncology Group phase I consortium report. J Clin Oncol. 2010;28(22):3623–9.  https://doi.org/10.1200/JCO.2009.25.9119 (Epub 2010 Jul 6).Google Scholar
  71. 71.
    Jakacki RI, Foley MA, Horan J, Wang J, Kieran MW, Bowers DC, et al. Single-agent erlotinib versus oral etoposide in patients with recurrent or refractory pediatric ependymoma: a randomized open-label study. J Neurooncol. 2016;129(1):131–8.  https://doi.org/10.1007/s11060-016-2155-4 (Epub 2016 Jun 10).Google Scholar
  72. 72.
    Wright KD, Daryani VM, Turner DC, Onar-Thomas A, Boulos N, et al. Phase I study of 5-fluorouracil in children and young adults with recurrent ependymoma. Neuro Oncol. 2015;17(12):1620–7.  https://doi.org/10.1093/neuonc/nov181 (Epub 2015 Nov 4).Google Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2019

Authors and Affiliations

  1. 1.Servicio de NeurocirugíaHospital Universitario de BurgosBurgosSpain
  2. 2.Servicio de Oncología RadioterápicaHospital Universitario de BurgosBurgosSpain
  3. 3.Servicio de RadiologíaHospital Universitario de BurgosBurgosSpain
  4. 4.Servicio de NeurocirugíaHospital General Universitario “Gregorio Marañón” de MadridMadridSpain
  5. 5.Servicio de Neurofisiología ClínicaHospital Universitario de BurgosBurgosSpain

Personalised recommendations