Advertisement

A candidate for lung cancer treatment: arsenic trioxide

  • W. Huang
  • Y. C. ZengEmail author
Review Article

Abstract

Arsenic trioxide (ATO), a highly effective drug in treating acute promyelocytic leukemia with low toxicity, demonstrates a significant effect on lung cancer. The anti-cancer mechanisms of ATO include inhibition of cancer stem-like cells, induction of apoptosis, anti-angiogenesis, sensitization of chemotherapy and radiotherapy, anti-cancer effects of hypoxia, and immunoregulation properties. In addition, some studies have reported that different lung cancers respond differently to ATO. It was concluded on numerous studies that the rational combination of administration and encapsulation of ATO have promising potentials in increasing drug efficacy and decreasing adverse drug effects. We reviewed the efficacy of ATO in the treatment of lung cancer in recent years to provide some views for further study.

Keywords

Arsenic trioxide Lung cancer Anti-cancer mechanism Drug combination Encapsulation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81201803) and the Foundation of Liaoning Province Education Administration (No. LQNK201714).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The manuscript does not report clinical or patient data acquired by any of the authors.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

The manuscript does not report clinical or patient data acquired by any of the authors.

References

  1. 1.
    Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19.Google Scholar
  2. 2.
    Waxman S, Anderson KC. History of the development of arsenic derivatives in cancer therapy. Oncologist. 2001;6(Suppl 2):3–10.Google Scholar
  3. 3.
    Lengfelder E, Hofmann WK, Nowak D. Impact of arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia. 2012;26(3):433–42.Google Scholar
  4. 4.
    Antman KH. Introduction: the history of arsenic trioxide in cancer therapy. Oncologist. 2001;6(Suppl 2):1–2.Google Scholar
  5. 5.
    Zhang X, Jia S, Yang S, Yang Y, Yang T, Yang Y. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression. J Cell Biochem. 2012;113(11):3528–35.Google Scholar
  6. 6.
    Gao JK, Wang LX, Long B, Ye XT, Su JN, Yin XY, et al. Arsenic trioxide inhibits cell growth and invasion via down- regulation of Skp2 in pancreatic cancer cells. Asian Pac J Cancer Prev. 2015;16(9):3805–10.Google Scholar
  7. 7.
    Walker AM, Stevens JJ, Ndebele K, Tchounwou PB. Evaluation of arsenic trioxide potential for lung cancer treatment: assessment of apoptotic mechanisms and oxidative damage. J Cancer Sci Ther. 2016;8(1):1–9.Google Scholar
  8. 8.
    Liu Y, Hock JM, Van Beneden RJ, Li X. Aberrant overexpression of FOXM1 transcription factor plays a critical role in lung carcinogenesis induced by low doses of arsenic. Mol Carcinog. 2014;53(5):380–91.Google Scholar
  9. 9.
    Perona R, Lopez-Ayllon BD, de Castro Carpeno J, Belda-Iniesta C. A role for cancer stem cells in drug resistance and metastasis in non-small-cell lung cancer. Clin Transl Oncol. 2011;13(5):289–93.Google Scholar
  10. 10.
    Hassan KA, Wang L, Korkaya H, Chen G, Maillard I, Beer DG, et al. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 2013;19(8):1972–80.Google Scholar
  11. 11.
    He B, Barg RN, You L, Xu Z, Reguart N, Mikami I, et al. Wnt signaling in stem cells and non-small-cell lung cancer. Clin Lung Cancer. 2005;7(1):54–60.Google Scholar
  12. 12.
    Zhang S, Wang Y, Mao JH, Hsieh D, Kim IJ, Hu LM, et al. Inhibition of CK2alpha down-regulates Hedgehog/Gli signaling leading to a reduction of a stem-like side population in human lung cancer cells. PLoS ONE. 2012;7(6):e38996.Google Scholar
  13. 13.
    Hong Z, Bi A, Chen D, Gao L, Yin Z, Luo L. Activation of hedgehog signaling pathway in human non-small cell lung cancers. Pathol Oncol Res. 2014;20(4):917–22.Google Scholar
  14. 14.
    Chang KJ, Yang MH, Zheng JC, Li B, Nie W. Arsenic trioxide inhibits cancer stem-like cells via down-regulation of Gli1 in lung cancer. Am J Transl Res. 2016;8(2):1133–43.Google Scholar
  15. 15.
    Zhen Y, Zhao S, Li Q, Li Y, Kawamoto K. Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett. 2010;292(1):64–72.Google Scholar
  16. 16.
    Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology. 2002;181–182:475–81.Google Scholar
  17. 17.
    Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther. 2013;138(2):255–71.Google Scholar
  18. 18.
    Leung LL, Lam SK, Li YY, Ho JC. Tumour growth-suppressive effect of arsenic trioxide in squamous cell lung carcinoma. Oncol Lett. 2017;14(3):3748–54.Google Scholar
  19. 19.
    Chen H, Gu S, Dai H, Li X, Zhang Z. Dihydroartemisinin sensitizes human lung adenocarcinoma A549 cells to arsenic trioxide via apoptosis. Biol Trace Elem Res. 2017;179(2):203–12.Google Scholar
  20. 20.
    Walker AM, Stevens JJ, Ndebele K, Tchounwou PB. Arsenic trioxide modulates DNA synthesis and apoptosis in lung carcinoma cells. Int J Environ Res Public Health. 2010;7(5):1996–2007.Google Scholar
  21. 21.
    Qu GP, Xiu QY, Li B, Liu YA, Zhang LZ. Arsenic trioxide inhibits the growth of human lung cancer cell lines via cell cycle arrest and induction of apoptosis at both normoxia and hypoxia. Toxicol Ind Health. 2009;25(8):505–15.Google Scholar
  22. 22.
    Han YH, Kim SZ, Kim SH, Park WH. Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Lett. 2008;270(1):40–55.Google Scholar
  23. 23.
    Wei L, Wang XW, Zuo WS. Toxicity of arsenic trioxide to human lung adenocarcinoma cell line SPCA1 and its mechanism. Ai Zheng. 2004;23(12):1633–8.Google Scholar
  24. 24.
    Dong J, Wu Y, Dong X, Xu L, Liu L. Cell cycle arrest and apoptosis induced by arsenic trioxide in human lung cancer cell line. Zhongguo Fei Ai Za Zhi. 2000;3(6):435–7.Google Scholar
  25. 25.
    Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 2016;6(3):a026104.Google Scholar
  26. 26.
    Zwang Y, Oren M, Yarden Y. Consistency test of the cell cycle: roles for p53 and EGR1. Cancer Res. 2012;72(5):1051–4.Google Scholar
  27. 27.
    Shi Y, Liu Y, Huo J, Gao G. Arsenic trioxide induced apoptosis and expression of p53 and bcl-2 genes in human small cell lung cancer cells. Zhonghua Jie He He Hu Xi Za Zhi. 2002;25(11):665–6.Google Scholar
  28. 28.
    Lam SK, Li YY, Zheng CY, Leung LL, Ho JC. E2F1 downregulation by arsenic trioxide in lung adenocarcinoma. Int J Oncol. 2014;45(5):2033–43.Google Scholar
  29. 29.
    Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006;79(4):173–89.Google Scholar
  30. 30.
    Duclos C, Lavoie C, Denault JB. Caspases rule the intracellular trafficking cartel. FEBS J. 2017;284(10):1394–420.Google Scholar
  31. 31.
    O’Brien DI, Nally K, Kelly RG, O’Connor TM, Shanahan F, O’Connell J. Targeting the Fas/Fas ligand pathway in cancer. Expert Opin Ther Targets. 2005;9(5):1031–44.Google Scholar
  32. 32.
    Li X, You M, Liu YJ, Ma L, Jin PP, Zhou R, et al. Reversal of the apoptotic resistance of non-small-cell lung carcinoma towards TRAIL by natural product toosendanin. Sci Rep. 2017;7:42748.Google Scholar
  33. 33.
    Bhojani MS, Rossu BD, Rehemtulla A. TRAIL and anti-tumor responses. Cancer Biol Ther. 2003;2(4 Suppl 1):S71–8.Google Scholar
  34. 34.
    Wang JY, Zhao XQ, Wang CM, Mo BW, Jiang M, Chen F. Arsenic trioxide enhances TRAIL inducing human lung cancer cell line A549 cells apoptosis by down-regulate the expression of NF-kappaB. Sichuan Da Xue Xue Bao Yi Xue Ban. 2012;43(6):834–8.Google Scholar
  35. 35.
    Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11(9):621–32.Google Scholar
  36. 36.
    Jiang X, Chen C, Liu Y, Zhang P, Zhang Z. Critical role of cellular glutathione homeostasis for trivalent inorganic arsenite-induced oxidative damage in human bronchial epithelial cells. Mutat Res Genet Toxicol Environ Mutagen. 2014;770:35–45.Google Scholar
  37. 37.
    Zheng CY, Lam SK, Li YY, Ho JC. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int J Oncol. 2015;46(3):1067–78.Google Scholar
  38. 38.
    Gu S, Chen C, Jiang X, Zhang Z. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem Biol Interact. 2016;245:100–9.Google Scholar
  39. 39.
    Gu S, Chen C, Jiang X, Zhang Z. Study on the resveratrol and arsenic trioxide combination induced apoptosis and its mechanism on lung adenocarcinoma cells. Wei Sheng Yan Jiu. 2016;45(1):87–92.Google Scholar
  40. 40.
    Gu S, Chen C, Jiang X, Zhang Z. Resveratrol synergistically triggers apoptotic cell death with arsenic trioxide via oxidative stress in human lung adenocarcinoma A549 cells. Biol Trace Elem Res. 2015;163(1–2):112–23.Google Scholar
  41. 41.
    Han YH, Kim SH, Kim SZ, Park WH. Apoptosis in arsenic trioxide-treated Calu-6 lung cells is correlated with the depletion of GSH levels rather than the changes of ROS levels. J Cell Biochem. 2008;104(3):862–78.Google Scholar
  42. 42.
    Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63.Google Scholar
  43. 43.
    Li H, Zhu X, Zhang Y, Xiang J, Chen H. Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction. J Exp Clin Cancer Res. 2009;28:110.Google Scholar
  44. 44.
    Han B, Zhou G, Zhang Q, Zhang J, Wang X, et al. Effect of arsenic trioxide (ATO) on human lung carcinoma PG cell line: ATO induced apoptosis of PG cells and decreased expression of Bcl-2, Pgp. J Exp Ther Oncol. 2004;4(4):335–42.Google Scholar
  45. 45.
    Gu S, Lai Y, Chen H, Liu Y, Zhang Z. miR-155 mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Sci Rep. 2017;7(1):12155.Google Scholar
  46. 46.
    Gatti L, Cossa G, Tinelli S, Carenini N, Arrighetti N, Pennati M, et al. Improved apoptotic cell death in drug-resistant non-small-cell lung cancer cells by tumor necrosis factor-related apoptosis-inducing ligand-based treatment. J Pharmacol Exp Ther. 2014;348(3):360–71.Google Scholar
  47. 47.
    Kang YH, Yi MJ, Kim MJ, Park MT, Bae S, Kang CM, et al. Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res. 2004;64(24):8960–7.Google Scholar
  48. 48.
    Mobahat M, Narendran A, Riabowol K. Survivin as a preferential target for cancer therapy. Int J Mol Sci. 2014;15(2):2494–516.Google Scholar
  49. 49.
    Khan Z, Khan AA, Yadav H, Prasad G, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett. 2017;22:8.Google Scholar
  50. 50.
    Cheng Y, Chang LW, Tsou TC. Mitogen-activated protein kinases mediate arsenic-induced down-regulation of survivin in human lung adenocarcinoma cells. Arch Toxicol. 2006;80(6):310–8.Google Scholar
  51. 51.
    Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006;127(7):1323–34.Google Scholar
  52. 52.
    Huang CL, Liu D, Nakano J, Yokomise H, Ueno M, Kadota K, et al. E2F1 overexpression correlates with thymidylate synthase and survivin gene expressions and tumor proliferation in non small-cell lung cancer. Clin Cancer Res. 2007;13(23):6938–46.Google Scholar
  53. 53.
    Lam SK, Mak JC, Zheng CY, Li YY, Kwong YL, Ho JC. Downregulation of thymidylate synthase with arsenic trioxide in lung adenocarcinoma. Int J Oncol. 2014;44(6):2093–102.Google Scholar
  54. 54.
    Bunn PA Jr. Incorporation of pemetrexed (Alimta) into the treatment of non-small cell lung cancer (thoracic tumors). Semin Oncol. 2002;29(3 Suppl 9):17–22.Google Scholar
  55. 55.
    Kailashiya C, Sharma HB, Kailashiya J. Telomerase based anticancer immunotherapy and vaccines approaches. Vaccine. 2017;35(43):5768–75.Google Scholar
  56. 56.
    Cheng Y, Li Y, Ma C, Song Y, Xu H, Yu H, et al. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction. Oncotarget. 2016;7(11):12682–92.Google Scholar
  57. 57.
    Manzo A, Montanino A, Carillio G, Costanzo R, Sandomenico C, Normanno N, et al. Angiogenesis inhibitors in NSCLC. Int J Mol Sci. 2017;18(10):2021.Google Scholar
  58. 58.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.Google Scholar
  59. 59.
    Yang MH, Zang YS, Huang H, Chen K, Li B, Sun GY, et al. Arsenic trioxide exerts anti-lung cancer activity by inhibiting angiogenesis. Curr Cancer Drug Targets. 2014;14(6):557–66.Google Scholar
  60. 60.
    Xie SL, Yang MH, Chen K, Huang H, Zhao XW, Zang YS, et al. Efficacy of arsenic trioxide in the treatment of malignant pleural effusion caused by pleural metastasis of lung cancer. Cell Biochem Biophys. 2015;71(3):1325–33.Google Scholar
  61. 61.
    Yang MH, Chang KJ, Zheng JC, Huang H, Sun GY, Zhao XW, et al. Anti-angiogenic effect of arsenic trioxide in lung cancer via inhibition of endothelial cell migration, proliferation and tube formation. Oncol Lett. 2017;14(3):3103–9.Google Scholar
  62. 62.
    Steuer CE, Khuri FR, Ramalingam SS. The next generation of epidermal growth factor receptor tyrosine kinase inhibitors in the treatment of lung cancer. Cancer. 2015;121(8):E1–6.Google Scholar
  63. 63.
    Li C, Sun BQ, Gai XD. Compounds from Chinese herbal medicines as reversal agents for P-glycoprotein-mediated multidrug resistance in tumours. Clin Transl Oncol. 2014;16(7):593–8.Google Scholar
  64. 64.
    Zheng CY, Lam SK, Li YY, Fong BM, Mak JC, Ho JC. Combination of arsenic trioxide and chemotherapy in small cell lung cancer. Lung Cancer. 2013;82(2):222–30.Google Scholar
  65. 65.
    Li HC, Wang CX, Huang C, Wang LF, Mu XY, Jiang SJ, et al. Effect and mechanism of arsenic trioxide on chemosensitivity of human lung adenocarcinoma cells. Zhonghua Jie He He Hu Xi Za Zhi. 2003;26(11):689–92.Google Scholar
  66. 66.
    Chen F, Sui G, Chen H, Cui Y. The influence of arsenic trioxide combined with cisplatin on the growth and expression of X-linked inhibitor of apoptosis protein, XIAP of human non-small cell lung cancer cells. Zhongguo Fei Ai Za Zhi. 2007;10(3):168–71.Google Scholar
  67. 67.
    Suzuki T, Ishibashi K, Yumoto A, Nishio K, Ogasawara Y. Utilization of arsenic trioxide as a treatment of cisplatin-resistant non-small cell lung cancer PC-9/CDDP and PC-14/CDDP cells. Oncol Lett. 2015;10(2):805–9.Google Scholar
  68. 68.
    Wang C, Pan Z, Hou H, Li D, Mo Y, Mo C, et al. The enhancement of radiation sensitivity in nasopharyngeal carcinoma cells via activation of the Rac1/NADPH signaling pathway. Radiat Res. 2016;185(6):638–46.Google Scholar
  69. 69.
    Morgan MA, Lawrence TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res. 2015;21(13):2898–904.Google Scholar
  70. 70.
    Diepart C, Karroum O, Magat J, Feron O, Verrax J, Calderon PB, et al. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors. Cancer Res. 2012;72(2):482–90.Google Scholar
  71. 71.
    Wei LH, Lai KP, Chen CA, Cheng CH, Huang YJ, Chou CH, et al. Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene. 2005;24(3):390–8.Google Scholar
  72. 72.
    Shen J, Qu GP, Xiu QY, Li B. Effects of arsenic trioxide on apoptosis and proliferation of human lung cancer cells under hypoxia. Zhong Xi Yi Jie He Xue Bao. 2008;6(3):274–7.Google Scholar
  73. 73.
    Wang H, Gao P, Zheng J. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells. Biochem Biophys Res Commun. 2014;451(4):556–61.Google Scholar
  74. 74.
    Lee MH, Cho Y, Kim DH, Woo HJ, Yang JY, Kwon HJ, et al. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1. Am J Transl Res. 2016;8(12):5246–55.Google Scholar
  75. 75.
    Pettersson HM, Pietras A, Munksgaard Persson M, Karlsson J, Johansson L, Shoshan MC, et al. Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cell. Mol Cancer Ther. 2009;8(1):160–70.Google Scholar
  76. 76.
    Gao Q, Jiang J, Chu Z, Lin H, Zhou X, Liang X. Arsenic trioxide inhibits tumor-induced myeloid-derived suppressor cells and enhances T-cell activity. Oncol Lett. 2017;13(4):2141–50.Google Scholar
  77. 77.
    Wang L, Wang R, Fan L, Liang W, Liang K, Xu Y, et al. Arsenic trioxide is an immune adjuvant in liver cancer treatment. Mol Immunol. 2017;81:118–26.Google Scholar
  78. 78.
    Thomas-Schoemann A, Batteux F, Mongaret C, Nicco C, Chereau C, Annereau M, et al. Arsenic trioxide exerts antitumor activity through regulatory T cell depletion mediated by oxidative stress in a murine model of colon cancer. J Immunol. 2012;189(11):5171–7.Google Scholar
  79. 79.
    Yang X, Lin D. Changes of 2015 WHO histological classification of lung cancer and the clinical significance. Zhongguo Fei Ai Za Zhi. 2016;19(6):332–6.Google Scholar
  80. 80.
    Pettersson HM, Pietras A, Munksgaard Persson M, Karlsson J, Johansson L, Shoshan MC, et al. Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells. Mol Cancer Ther. 2009;8(1):160–70.Google Scholar
  81. 81.
    Lam SK, Leung LL, Li YY, Zheng CY, Ho JC. Combination effects of arsenic trioxide and fibroblast growth factor receptor inhibitor in squamous cell lung carcinoma. Lung Cancer. 2016;101:111–9.Google Scholar
  82. 82.
    Wu DD, Lau ATY, Yu FY, Cai NL, Dai LJ, Ok Kim M, et al. Extracellular signal-regulated kinase 8-mediated NF-kappaB activation increases sensitivity of human lung cancer cells to arsenic trioxide. Oncotarget. 2017;8(30):49144–55.Google Scholar
  83. 83.
    Leslie EM. Arsenic-glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J Inorg Biochem. 2012;108:141–9.Google Scholar
  84. 84.
    Kryeziu K, Jungwirth U, Hoda MA, Ferk F, Knasmuller S, Karnthaler-Benbakka C, et al. Synergistic anticancer activity of arsenic trioxide with erlotinib is based on inhibition of EGFR-mediated DNA double-strand break repair. Mol Cancer Ther. 2013;12(6):1073–84.Google Scholar
  85. 85.
    Andrew AS, Mason RA, Memoli V, Duell EJ. Arsenic activates EGFR pathway signaling in the lung. Toxicol Sci. 2009;109(2):350–7.Google Scholar
  86. 86.
    Jiang TT, Brown SL, Kim JH. Combined effect of arsenic trioxide and sulindac sulfide in A549 human lung cancer cells in vitro. J Exp Clin Cancer Res. 2004;23(2):259–62.Google Scholar
  87. 87.
    Park JH, Kim EJ, Jang HY, Shim H, Lee KK, Jo HJ, et al. Combination treatment with arsenic trioxide and sulindac enhances apoptotic cell death in lung cancer cells via activation of oxidative stress and mitogen-activated protein kinases. Oncol Rep. 2008;20(2):379–84.Google Scholar
  88. 88.
    Jin HO, Yoon SI, Seo SK, Lee HC, Woo SH, Yoo DH, et al. Synergistic induction of apoptosis by sulindac and arsenic trioxide in human lung cancer A549 cells via reactive oxygen species-dependent down-regulation of survivin. Biochem Pharmacol. 2006;72(10):1228–36.Google Scholar
  89. 89.
    Jin HO, Seo SK, Woo SH, Lee HC, Kim ES, Yoo DH, et al. A combination of sulindac and arsenic trioxide synergistically induces apoptosis in human lung cancer H1299 cells via c-Jun NH2-terminal kinase-dependent Bcl-xL phosphorylation. Lung Cancer. 2008;61(3):317–27.Google Scholar
  90. 90.
    Mandegary A, Torshabi M, Seyedabadi M, Amirheidari B, Sharif E, Ghahremani MH. Indomethacin-enhanced anticancer effect of arsenic trioxide in A549 cell line: involvement of apoptosis and phospho-ERK and p38 MAPK pathways. Biomed Res Int. 2013;2013:237543.Google Scholar
  91. 91.
    Seo SK, Kim JH, Choi HN, Choe TB, Hong SI, Yi JY, et al. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction. Biochem Biophys Res Commun. 2014;449(4):490–5.Google Scholar
  92. 92.
    Yochum ZA, Cades J, Mazzacurati L, Neumann NM, Khetarpal SK, Chatterjee S, et al. A first-in-class TWIST1 inhibitor with activity in oncogene-driven lung cancer. Mol Cancer Res. 2017;15(12):1764–76.Google Scholar
  93. 93.
    Van Roosbroeck K, Fanini F, Setoyama T, Ivan C, Rodriguez-Aguayo C, Vannini I, et al. Combining anti-mir-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res. 2017;23(11):2891–904.Google Scholar
  94. 94.
    Gu SY, Chen HY, Dai HM, Li XY, Zhang ZZ. miR-155/BACH1 signaling pathway in human lung adenocarcinoma cell death induced by arsenic trioxide. Sichuan Da Xue Xue Bao Yi Xue Ban. 2017;48(6):828–33.Google Scholar
  95. 95.
    Jiang X, Chen C, Gu S, Zhang Z. Regulation of ABCG2 by nuclear factor kappa B affects the sensitivity of human lung adenocarcinoma A549 cells to arsenic trioxide. Environ Toxicol Pharmacol. 2017;57:141–50.Google Scholar
  96. 96.
    Akhtar A, Xiaoyan Wang S, Ghali L, Bell C, Wen X. Recent advances in arsenic trioxide encapsulated nanoparticles as drug delivery agents to solid cancers. J Biomed Res. 2017;31(3):177–88.Google Scholar
  97. 97.
    Chen H, Ahn R, Van den Bossche J, Thompson DH, O’Halloran TV. Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide. Mol Cancer Ther. 2009;8(7):1955–63.Google Scholar
  98. 98.
    Xiao X, Liu Y, Guo M, Fei W, Zheng H, Zhang R, et al. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. J Biomater Appl. 2016;31(1):23–35.Google Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2019

Authors and Affiliations

  1. 1.Department of Medical OncologyShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations