Advertisement

Clinical and Translational Oncology

, Volume 20, Issue 8, pp 966–974 | Cite as

Perspective on immune oncology with liquid biopsy, peripheral blood mononuclear cells, and microbiome with non-invasive biomarkers in cancer patients

Review Article

Abstract

Antibodies against immune checkpoint inhibitors such as anti-programmed cell death protein 1 (PD-1) and anti-programmed death ligand 1 (PD-L1) play a key role in the treatment of advanced lung cancer. To examine the clinical benefits of these agents, preclinical and clinical studies have been conducted to identify definitive biomarkers associated with cancer status. Analysis of the blood and feces of tumor patients has attracted attention in recent studies attempting to identify non-invasive biomarkers such as cytokines, soluble PD-L1, peripheral blood mononuclear cells, and gut microbiota. These factors are believed to interact with each other to produce synergistic effects and contribute to the formation of the tumor immune microenvironment through the seven steps of the cancer immunity cycle. The immunogram was first introduced as a novel indicator to define the immunity status of cancer patients. In this review, we discuss the progress in the identification of predictive biomarkers as well as future prospects for anti-PD-1/PD-L1 therapy.

Keywords

Biomarker Nivolumab Pembrolizumab Soluble PD-L1 Peripheral blood mononuclear cells Microbiota 

Abbreviations

CtDNA

Circulating tumor DNA

ERCC-1

Excision repair cross complementation group 1

IHC

Immunohistochemistry

Inos

Inducible nitric oxide synthase

IGS

Immunogram scores

MMP-13

Matrix metalloproteinase-13

mDCs

Mature dendritic cells

MSCs

Mesenchymal stromal cells

MDSC

Myeloid-derived suppressor cell

NSCLC

Non-small cell lung cancer

OS

Overall survival

ORR

Overall response rate

PD-1

Programmed cell death protein 1

PD-L1

Programmed death ligand 1

PFS

Progression-free survival

pSTAT3

Phosphorylated STAT3

sPD-L1

Soluble PD-L1

TCR

T cell receptor

Treg

T regulatory cell

VEGF

Vascular endothelial growth factor

Notes

Acknowledgements

This research did not receive any specific grants from public, commercial, or not-for-profit funding agencies. The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

No specific funding was received for this work.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest regarding this review article.

Research involving human participants and/or animals

Not applicable in this review article.

Informed consent

Not applicable in this review article.

References

  1. 1.
    Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Hodi FS, Dranoff G. The biologic importance of tumor–infiltrating lymphocytes. J Cutan Pathol. 2010;37:48–53.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kloor M. Lymphocyte infiltration and prognosis in colorectal cancer. Lancet Oncol. 2009;10:840–1.CrossRefPubMedGoogle Scholar
  4. 4.
    Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Guan J, Lim KS, Mekhail T, Chang CC. Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: a key player against various cancers. Arch Pathol Lab Med. 2017;141:851–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor-infiltrating dendritic cells maturation. Med Oncol. 2011;28:682–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD–1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single–agent anti-programmed death–1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy. Immunity. 2016;44:1069–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for pd–l1–positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for pd-l1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3:1051–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu X, Lang J. Soluble PD–1 and PD–L1: predictive and prognostic significance in cancer. Oncotarget. 2017.  https://doi.org/10.18632/oncotarget.18311.Google Scholar
  18. 18.
    Yamazaki N, Kiyohara Y, Uhara H, Iizuka H, Uehara J, Otsuka F, et al. Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma. Cancer Sci. 2017;108:1022–31.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME, et al. Changes in serum interleukin-8 (IL–8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small cell lung cancer patients. Ann Oncol. 2017;28:1988–95.CrossRefPubMedGoogle Scholar
  20. 20.
    Akiyama Y, Nonomura C, Kondou R, Miyata H, Ashizawa T, Maeda C, et al. Immunological effects of the anti-programmed death-1 antibody on human peripheral blood mononuclear cells. Int J Oncol. 2016;49:1099–107.CrossRefPubMedGoogle Scholar
  21. 21.
    Akyüz N, Brandt A, Stein A, Schliffke S, Mährle T, Quidde J, et al. T–cell diversification reflects antigen selection in the blood of patients on immune checkpoint inhibition and may be exploited as liquid biopsy biomarker. Int J Cancer. 2017;140:2535–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Botticelli A, Zizzari I, Mazzuca F, Ascierto PA, Putignani L, Marchetti L, et al. Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment. Oncotarget. 2017;8:8890–9.PubMedGoogle Scholar
  23. 23.
    Xu LH, Chi XY, Li FY, Jia QT, Zha QB, He XH. Preparation and identification of human soluble sPD-L1 and its antibodies. Sheng Wu Gong Cheng Xue Bao. 2007;23:106–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Okuma Y, Hosomi Y, Nakahara Y, Watanabe K, Sagawa Y, Homma S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017;104:1–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Rossille D, Gressier M, Damotte D, Maucort-Boulch D, Pangault C, Semana G, et al. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma: results from a French multicenter clinical trial. Leukemia. 2014;28:2367–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Finkelmeier F, Canli Ö, Tal A, Pleli T, Trojan J, Schmidt M, et al. High levels of the soluble programmed death–ligand (sPD–L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur J Cancer. 2016;59:152–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Takahashi N, Iwasa S, Sasaki Y, Shoji H, Honma Y, Takashima A, et al. Serum levels of soluble programmed cell death ligand 1 as a prognostic factor on the first–line treatment of metastatic or recurrent gastric cancer. J Cancer Res Clin Oncol. 2016;142:1727–38.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou J, Mahoney KM, Giobbie-Hurder A, Zhao F, Lee S, Liao X, et al. Soluble PD–L1 as a biomarker in malignant melanoma treated with checkpoint blockade. Cancer Immunol Res. 2017;5:480–92.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396–403.CrossRefPubMedGoogle Scholar
  30. 30.
    Frigola X, Inman BA, Krco CJ, Liu X, Harrington SM, Bulur PA, et al. Soluble B7-H1: differences in production between dendritic cells and T cells. Immunol Lett. 2012;142(1–2):78–82.CrossRefPubMedGoogle Scholar
  31. 31.
    Davies LC, Heldring N, Kadri N, Le Blanc K. Mesenchymal stromal cell secretion of programmed death–1 ligands regulates t cell mediated immunosuppression. Stem Cells. 2017;35:766–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Dezutter-Dambuyant C, Durand I, Alberti L, Bendriss-Vermare N, Valladeau-Guilemond J, Duc A, et al. A novel regulation of PD-1 ligands on mesenchymal stromal cells through MMP-mediated proteolytic cleavage. Oncoimmunology. 2015;5:e1091146.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22:5487–96.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nakamura Y, Kitano S, Takahashi A, Tsutsumida A, Namikawa K, Tanese K, et al. Nivolumab for advanced melanoma: pretreatment prognostic factors and early outcome markers during therapy. Oncotarget. 2016;7:77404–15.PubMedPubMedCentralGoogle Scholar
  35. 35.
    McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22:433–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, et al. Proliferation of PD-1 + CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A. 2017;114:4993–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428–33.CrossRefPubMedGoogle Scholar
  39. 39.
    Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017;355:1423–7.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dronca RS, Liu X, Harrington SM, Chen L, Cao S, Kottschade LA, et al. T cell Bim levels reflect responses to anti-PD-1 cancer therapy. JCI Insight. 2016;1:e86014.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dulos J, Carven GJ, van Boxtel SJ, Evers S, Driessen-Engels LJ, Hobo W, et al. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J Immunother. 2012;35:169–78.CrossRefPubMedGoogle Scholar
  42. 42.
    Nonomura Y, Otsuka A, Nakashima C, Seidel JA, Kitoh A, Dainichi T, et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients. Oncoimmunology. 2016;5:e1248327.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Weber JS, Ramakrishnan R, Laino A, Berglund AE, Woods D. Association of changes in T regulatory cells (Treg) during nivolumab treatment with melanoma outcome. J Clin Oncol. 2017;35:(suppl; abstr 3031).Google Scholar
  44. 44.
    Kagamu H, Yamaguchi O, Shiono A, Mouri A, Miyauchi S, Utsugi H et al. CD4+ T cells in PBMC to predict the outcome of anti–PD–1 therapy. J Clin Oncol. 2017;35:(suppl; abstr 11525).Google Scholar
  45. 45.
    Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T cell differentiation: human memory T cell subsets. Eur J Immunol. 2013;43:2797–809.CrossRefPubMedGoogle Scholar
  46. 46.
    Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Draghiciu O, Lubbers J, Nijman HW, Daemen T. Generation and functional characterization of MDSC–like cells. Oncoimmunology. 2015;4:e954829.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Weber J, Gibney G, Kudchadkar R, Yu B, Cheng P, Martinez AJ, et al. Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol Res. 2016;4:345–53.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40:2969–75.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Naing A, Papadopoulos KP, Infante JR, Wong DJ, Autio KA, Ott PA, et al. Clinical activity and safety of pegylated human IL–10 (AM0010) in combination with anti–PD1. J Clin Oncol. 2016;34:3018.CrossRefGoogle Scholar
  51. 51.
    Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, et al. Angiopoietin–2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol Res. 2017;5:17–28.CrossRefPubMedGoogle Scholar
  52. 52.
    Ott PA, Hodi FS, Buchbinder EI. Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Clin Ther. 2015;37:764–82.CrossRefGoogle Scholar
  53. 53.
    Courau T, Nehar-Belaid D, Florez L, Levacher B, Vazquez T, Brimaud F, et al. TGF–β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight. 2016;1:e85974.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yuan J, Zhou J, Dong Z, Tandon S, Kuk D, Panageas KS, et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res. 2014;2:127–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–42.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen–specific T–cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lipson EJ, Velculescu VE, Pritchard TS, Sausen M, Pardoll DM, Topalian SL, et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer. 2014;2:42.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann Oncol. 2017;28:1996–2001.CrossRefPubMedGoogle Scholar
  61. 61.
    Guibert N, Mazieres J, Delaunay M, Casanova A, Farella M, Keller L, et al. Monitoring of KRAS-mutated ctDNA to discriminate pseudo-progression from true progression during anti-PD-1 treatment of lung adenocarcinoma. Oncotarget. 2017;8:38056–60.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, et al. Checkpoint inhibitors in metastatic EGFR–mutated non-small cell lung cancer–a meta–analysis. J Thorac Oncol. 2017;12:403–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD–1 blockade in melanoma. N Engl J Med. 2016;375:819–29.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.CrossRefPubMedGoogle Scholar
  65. 65.
    Nomizo T, Ozasa H, Tsuji T, Funazo T, Yasuda Y, Yoshida H, et al. Clinical impact of single nucleotide polymorphism in PD–l1 on response to nivolumab for advanced non-small-cell lung cancer patients. Sci Rep. 2017;7:45124.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Aiello MM, Vigneri PG, Bruzzi P, Verderame F, Paratore S, Restuccia N, et al. Excision repair cross complementation group 1 (ERCC-1) gene polymorphisms and response to nivolumab in advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2017;35:3032.Google Scholar
  67. 67.
    Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and anticancer immunosurveillance. Cell. 2016;165:276–87.CrossRefPubMedGoogle Scholar
  69. 69.
    Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 2012;12:144.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rabe H, Nordström I, Andersson K, Lundell AC, Rudin A. Staphylococcus aureus convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) T cells via the PD-1/PD-L1 axis. Immunology. 2014;141:467–81.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2017.  https://doi.org/10.1126/science.aan4236.Google Scholar
  75. 75.
    Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2017.  https://doi.org/10.1126/science.aan3706.PubMedGoogle Scholar
  76. 76.
    Kaderbhai C, Richard C, Fumet JD, Aarnink A, Foucher P, Coudert B, et al. Antibiotic use does not appear to influence response to nivolumab. Anticancer Res. 2017;37:3195–200.PubMedGoogle Scholar
  77. 77.
    Derosa L, Routy B, Enot D, Baciarello G, Massard C, Loriot Y, et al. Impact of antibiotics on outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. J Clin Oncol. 2017;35:462.CrossRefGoogle Scholar
  78. 78.
    Chen DS, Mellman I. Oncology meets immunology: the cancer–immunity cycle. Immunity. 2013;39:1–10.CrossRefPubMedGoogle Scholar
  79. 79.
    Blank CU, Haanen JB, Ribas A, Schumacher TN. The “cancer immunogram”. Science. 2016;352:658–60.CrossRefPubMedGoogle Scholar
  80. 80.
    Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, et al. An immunogram for the cancer–immunity cycle: towards personalized immunotherapy of lung cancer. J Thorac Oncol. 2017;12:791–803.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2018

Authors and Affiliations

  1. 1.Department of Thoracic Oncology and Respiratory MedicineTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalTokyoJapan

Personalised recommendations