Clinical and Translational Oncology

, Volume 19, Issue 9, pp 1059–1066 | Cite as

The role and clinical implications of the endosteal niche and osteoblasts in regulating leukemia

  • S. Azizidoost
  • V. Vijay
  • C. R. Cogle
  • E. Khodadi
  • N. SakiEmail author
Review Article


Osteoblasts are one among the critical components of the endosteal bone marrow (BM) niche. In addition to hematopoietic stem cell fate, their role in leukemogenesis as well as metastasis of a variety of cancers has been demonstrated in various studies. In this regard, endosteal niche can have a dual role as an initiator and protective role against leukemia. Knowledge of growth factors, chemokines and cytokines secreted by osteoblasts as well as their interaction with signaling pathways inform our understanding of the development, prognosis, recurrence and treatment of malignant BM diseases. Clinical progress in targeting the endosteal niche is also discussed.


Osteoblast Quiescence Endosteal niche Therapy Chemokine 



We wish to thank all our colleagues in Golestan Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Authors’ contributions

NS and CRC conceived the manuscript and revised it; SA, EK and VV wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study Informed consent is not required.


  1. 1.
    Saki N, Abroun S, Hagh MF, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 2011;13(3):131–6.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Khodadi E, Asnafi AA, Shahrabi S, Shahjahani M, Saki N. Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Ann Hematol. 2016;95(11):1765–76.CrossRefPubMedGoogle Scholar
  3. 3.
    Yin T, Li L. The stem cell niches in bone. J Clin Investig. 2006;116(5):1195–201.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hoggatt J, Pelus LM. Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Stem Cell Res Ther. 2011;2(2):13.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179(5):1677–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J, et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood. 2007;109(9):3706–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Calvi L, Adams G, Weibrecht K, Weber J, Olson D, Knight M, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425(6960):841–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Calvi LM. Osteoblastic activation in the hematopoietic stem cell niche. Ann N Y Acad Sci. 2006;1068(1):477–88.CrossRefPubMedGoogle Scholar
  9. 9.
    Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, et al. Leukaemogenesis induced by an activating [bgr]-catenin mutation in osteoblasts. Nature. 2014;506(7487):240–4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kremer KN, Dudakovic A, McGee-Lawrence ME, Philips RL, Hess AD, Smith BD, et al. Osteoblasts protect AML cells from SDF-1-induced apoptosis. J Cell Biochem. 2014;115(6):1128–37.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N. Bone marrow neoplastic niche in leukemia. Hematology. 2014;19(4):232–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    San Martin IA, Varela N, Gaete M, Villegas K, Osorio M, Tapia JC, et al. Impaired cell cycle regulation of the osteoblast-related heterodimeric transcription factor Runx2-Cbfβ in osteosarcoma cells. J Cell Physiol. 2009;221(3):560–71.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhao M, Li L. Osteoblast ablation burns out functional stem cells. Blood. 2015;125(17):2590–1.CrossRefPubMedGoogle Scholar
  15. 15.
    Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542–5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Min Y, Ren X, Vaught DB, Chen J, Donnelly E, Lynch CC, et al. Tie2 signaling regulates osteoclastogenesis and osteolytic bone invasion of breast cancer. Cancer Res. 2010;70(7):2819–28.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kasama T, Isozaki T, Odai T, Matsunawa M, Wakabayashi K, Takeuchi HT, et al. Expression of angiopoietin-1 in osteoblasts and its inhibition by tumor necrosis factor-alpha and interferon-gamma. Transl Res. 2007;149(5):265–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1(6):685–97.CrossRefPubMedGoogle Scholar
  20. 20.
    Kaushansky K. Thrombopoietin: the primary regulator of megakaryocyte and platelet production. Thromb Haemost. 1995;74(1):521–5.PubMedGoogle Scholar
  21. 21.
    Azizidoost S, Bavarsad MS, Bavarsad MS, Shahrabi S, Jaseb K, Rahim F, et al. The role of notch signaling in bone marrow niche. Hematology. 2015;20(2):93–103.CrossRefPubMedGoogle Scholar
  22. 22.
    Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett. 2006;580(12):2860–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Huber BC, Grabmaier U, Brunner S. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration. World J Stem Cells. 2014;6(5):637.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stier S, Cheng T, Dombkowski D, Carlesso N, Scadden DT. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood. 2002;99(7):2369–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Li Z, Hassan MQ, Volinia S, Van Wijnen AJ, Stein JL, Croce CM, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci. 2008;105(37):13906–11.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Regan J, Long F. Notch signaling and bone remodeling. Curr Osteoporos Rep. 2013;11(2):126–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong W-G, et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425(6960):836–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zeng Z, Shi YX, Samudio IJ, Wang R-Y, Ling X, Frolova O, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009;113(24):6215–24.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang L, Shalek AK, Lawrence M, Ding R, Gaublomme JT, Pochet N, et al. Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL. Blood. 2014;124(7):1089–98.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285–99.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Raza A, Galili N. The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer. 2012;12(12):849–59.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650–3.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112(13):4793–807.CrossRefPubMedGoogle Scholar
  35. 35.
    Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin. Blood. 2008;111(1):142–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–3.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, et al. Leukaemogenesis induced by an activating [bgr]-catenin mutation in osteoblasts. Nature. 2014;506:240–4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang GC, Xu YH, Chen HX, Wang XJ. Acute lymphoblastic leukemia cells inhibit the differentiation of bone mesenchymal stem cells into osteoblasts in vitro by activating notch signaling. Stem Cells Int. 2015;2015:162410. doi: 10.1155/2015/162410.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, et al. Kopan, Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14:306–14.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 2009;113:856–65.CrossRefPubMedGoogle Scholar
  41. 41.
    Ann EJ, Kim HY, Choi YH, Kim MY, Mo JS, Jung J, et al. Inhibition of Notch1 signaling by Runx2 during osteoblast differentiation. J Bone Miner Res. 2011;26:317–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Lane SW, Wang YJ, Celso CL, Ragu C, Bullinger L, Sykes SM, et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood. 2011;118:2849–56.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D, et al. β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2011;18:606–18.CrossRefGoogle Scholar
  44. 44.
    Jung Y, Song J, Shiozawa Y, Wang J, Wang Z, Williams B, et al. Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells. 2008;26:2042–51.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shiozawa Y, Taichman RS. Dysfunctional niches as a root of hematopoietic malignancy. Cell Stem Cell. 2010;6:399–400.CrossRefPubMedGoogle Scholar
  46. 46.
    Konopleva M, Konoplev S, Hu W, Zaritskey A, Afanasiev B, Andreeff M, et al. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia. 2002;16:1713.CrossRefPubMedGoogle Scholar
  47. 47.
    Kremer KN, Dudakovic A, McGee-Lawrence ME, Philips RL, Hess AD, Smith BD, et al. Osteoblasts protect AML cells from SDF-1-induced apoptosis. J Cell Biochem. 2014;115:1128–37.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kremer KN, Dudakovic A, Hess AD, Smith BD, Karp JE, Kaufmann SH, et al. Histone deacetylase inhibitors target the leukemic microenvironment by enhancing a Nherf1-protein phosphatase 1α-TAZ signaling pathway in osteoblasts. J Biol Chem. 2015;290:29478–92.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nair RR, Tolentino J, Hazlehurst LA. The bone marrow microenvironment as a sanctuary for minimal residual disease in CML. Biochem Pharmacol. 2010;80:602–12.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29:591–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, Stockerl-Goldstein KE, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917–24.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2000;3:687–94.CrossRefGoogle Scholar
  53. 53.
    Ritchie EK, Feldman EJ, Christos PJ, Rohan SD, Lagassa CB, Ippoliti C, et al. Decitabine in patients with newly diagnosed and relapsed acute myeloid leukemia. Leuk Lymphoma. 2013;54:2003–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Andreeff M, Zeng Z, Kelly MA, Wang R-Y, McQueen T, Duvvuri S, et al. Mobilization and elimination of FLT3-ITD+ acute myelogenous leukemia (AML) stem/progenitor cells by plerixafor/G-CSF/sorafenib: results from a Phase I trial in relapsed/refractory AML patients. Blood. 2010;120:142.Google Scholar
  55. 55.
    Becker PS, Foran JM, Altman JK, Yacoub A, Castro JE, Sabbatini P, et al. Targeting the CXCR4 pathway: safety, tolerability and clinical activity of ulocuplumab (BMS-936564), an anti-CXCR4 antibody, in relapsed/refractory acute myeloid leukemia. Blood. 2014;124:386.Google Scholar
  56. 56.
    Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res. 2013;19:357–66.CrossRefPubMedGoogle Scholar
  57. 57.
    Soria J-C, DeBraud F, Bahleda R, Adamo B, Andre F, Dientsmann R, et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann Oncol. 2014;25:2244–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Borthakur G, Nagler A, Ofran Y, Rowe JM, Altman JK, Frankfurt O, et al. BL-8040, a peptidic CXCR4 antagonist, induces leukemia cell death and specific leukemia cell mobilization in relapsed/refractory acute myeloid leukemia patients in an ongoing phase IIa clinical trial. Blood. 2014;124:950.Google Scholar
  59. 59.
    Galsky MD, Vogelzang NJ, Conkling P, Raddad E, Polzer J, Roberson S, et al. A phase I trial of LY2510924, a CXCR4 peptide antagonist, in patients with advanced cancer. Clin Cancer Res. 2014;20:3581–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Rashidi A, Uy GL. Targeting the microenvironment in acute myeloid leukemia. Curr Hematol Malig Rep. 2015;10:126–31.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nature Med. 2003;9:1158–65.CrossRefPubMedGoogle Scholar
  62. 62.
    Layani-Bazar A, Skornick I, Berrebi A, Pauker MH, Noy E, Silberman A, et al. Redox modulation of adjacent thiols in VLA-4 by AS101 converts myeloid leukemia cells from a drug-resistant to drug-sensitive state. Cancer Res. 2014;74:3092–103.CrossRefPubMedGoogle Scholar
  63. 63.
    Jamieson K, Odenike O. Late-phase investigational approaches for the treatment of relapsed/refractory acute myeloid leukemia. Expert Opin Pharmacother. 2012;13:2171–87.CrossRefPubMedGoogle Scholar
  64. 64.
    Chien S, Haq SU, Pawlus M, Moon RT, Estey EH, Appelbaum FR, et al. Adhesion of acute myeloid leukemia blasts to E-selectin in the vascular niche enhances their survival by mechanisms such as Wnt activation. Blood. 2013;122:61.CrossRefGoogle Scholar
  65. 65.
    Price TT, Sipkins DA. E-Selectin and SDF-1 regulate the metastatic trafficking of breast cancer cells within the bone. Mol Cell Oncol. 2016. doi: 10.1080/23723556.2016.1214771.Google Scholar
  66. 66.
    Guezguez B, Campbell CJ, Boyd AL, Karanu F, Casado FL, Di Cresce C, et al. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell. 2013;13:175–89.CrossRefPubMedGoogle Scholar
  67. 67.
    Taichman RS, Reilly MJ, Verma RS, Ehrenman K, Emerson SG, et al. Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol. 2001;112:438–48.CrossRefPubMedGoogle Scholar
  68. 68.
    Lévesque J, Helwani F, Winkler I. The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia. 2010;24:1979–92.CrossRefPubMedGoogle Scholar
  69. 69.
    Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–61.CrossRefPubMedGoogle Scholar
  70. 70.
    Reinholt FP, Hultenby K, Oldberg A, Heinegård D, et al. Osteopontin—a possible anchor of osteoclasts to bone. Proc Natl Acad Sci. 1990;87:4473–5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kirstetter P, Anderson K, Porse BT, Jacobsen SEW, Nerlov C, et al. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol. 2006;7:1048–56.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2017

Authors and Affiliations

  • S. Azizidoost
    • 1
  • V. Vijay
    • 2
  • C. R. Cogle
    • 2
  • E. Khodadi
    • 3
  • N. Saki
    • 3
    Email author
  1. 1.Student Research CommitteeAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Division of Hematology and Oncology, Department of Medicine, College of MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Health Research Institute, Research Center of Thalassemia and HemoglobinopathyAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations