Advertisement

Clinical and Translational Oncology

, Volume 18, Issue 11, pp 1062–1071 | Cite as

Survival in glioblastoma: a review on the impact of treatment modalities

  • P. D. Delgado-López
  • E. M. Corrales-García
Review Article

Abstract

Glioblastoma (GBM) is the most common and lethal tumor of the central nervous system. The natural history of treated GBM remains very poor with 5-year survival rates of 5 %. Survival has not significantly improved over the last decades. Currently, the best that can be offered is a modest 14-month overall median survival in patients undergoing maximum safe resection plus adjuvant chemoradiotherapy. Prognostic factors involved in survival include age, performance status, grade, specific markers (MGMT methylation, mutation of IDH1, IDH2 or TERT, 1p19q codeletion, overexpression of EGFR, etc.) and, likely, the extent of resection. Certain adjuncts to surgery, especially cortical mapping and 5-ALA fluorescence, favor higher rates of gross total resection with apparent positive impact on survival. Recurrent tumors can be offered re-intervention, participation in clinical trials, anti-angiogenic agent or local electric field therapy, without an evident impact on survival. Molecular-targeted therapies, immunotherapy and gene therapy are promising tools currently under research.

Keywords

Glioblastoma Survival Prognosis Radiotherapy Chemotherapy Tumor marker 

Notes

Acknowledgments

Thanks to I.D.C. López for the help in the composition of the manuscript.

Thanks to M. Rodríguez Miguélez for the careful review of the English version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.PubMedCrossRefGoogle Scholar
  2. 2.
    Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United Sates in 2007–2011. Neuro Oncol. 2014;16(Suppl 4):iv1–63.Google Scholar
  4. 4.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Scott JG, Bauchet L, Fraum TJ, Nayak L, Cooper AR, Chao ST, et al. Recursive partitioning analysis of prognostic factors for glioblastoma patients aged 70 years or older. Cancer. 2012;118(22):5595–600.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med. 2015;3(9):121.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Wrensch M, Minn Y, Chew T, Bondy M, Berger MS. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol. 2002;4(4):278–99.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wong ET, Lok E, Swanson KD. An evidence-based review of alternating electric fields therapy for malignant gliomas. Curr Treat Options Oncol. 2015;16(8):40.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, et al. Long-term survival with glioblastoma multiforme. Brain. 2007;130(Pt 10):2596–606.PubMedCrossRefGoogle Scholar
  10. 10.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedCrossRefGoogle Scholar
  11. 11.
    Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372(26):2499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res. 2013;19(4):764–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int. 2014;8(5):64.Google Scholar
  14. 14.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res. 2009;15(19):6002–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Farrell CJ, Plotkin SR. Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. Neurol Clin. 2007;25(4):925–46.PubMedCrossRefGoogle Scholar
  19. 19.
    Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshida T, Kawano N, Oka H, Fujii K, Nakazato Y. Clinical cure of glioblastoma—two case reports. Neurol Med Chir (Tokyo). 2000;40(4):224–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamada S, Endo Y, Hirose T, Takada K, Usui M, Hara M. Autopsy findings in a long-term survivor with glioblastoma multiforme—case report. Neurol Med Chir (Tokyo). 1998;38(2):95–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on surveillance, epidemiology, and end results (SEER) data, 1973–1991. J Neurosurg. 1998;88(1):1–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004;6(3):227–35.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48(14):2192–202.PubMedCrossRefGoogle Scholar
  26. 26.
    Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys. 1989;16(6):1405–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Vuorinen V, Hinkka S, Färkkilä M, Jääskeläinen J. Debulking or biopsy of malignant glioma in elderly people—a randomised study. Acta Neurochir (Wien). 2003;145(1):5–10.CrossRefGoogle Scholar
  28. 28.
    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.PubMedCrossRefGoogle Scholar
  29. 29.
    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, Raza SM, Pascual-Gallego M, Ibrahim A, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16(1):113–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Orringer D, Lau D, Khatri S, Zamora-Berridi GJ, Zhang K, Wu C, et al. Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg. 2012;117(5):851–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg. 2014;121(5):1115–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Bloch O, Han SJ, Cha S, Sun MZ, Aghi MK, McDermott MW, et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J Neurosurg. 2012;117(6):1032–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Gállego Pérez-Larraya J, Delattre JY. Management of elderly patients with gliomas. Oncologist. 2014;19(12):1258–67.Google Scholar
  35. 35.
    Oppenlander ME, Wolf AB, Snyder LA, Bina R, Wilson JR, Coons SW, et al. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg. 2014;120(4):846–53.PubMedCrossRefGoogle Scholar
  36. 36.
    Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet. 1995;345(8956):1008–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Wangaryattawanich P, Hatami M, Wang J, Thomas G, Flanders A, Kirby J, et al. Multicenter imaging outcomes study of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and progression-free survival. Neuro Oncol. 2015;17(11):1525–37.PubMedCrossRefGoogle Scholar
  38. 38.
    Sanai N, Berger MS. Intraoperative stimulation techniques for functional pathway preservation and glioma resection. Neurosurg Focus. 2010;28(2):E1.PubMedCrossRefGoogle Scholar
  39. 39.
    Krieg SM, Sollmann N, Obermueller T, Sabih J, Bulubas L, Negwer C, et al. Changing the clinical course of glioma patients by preoperative motor mapping with navigated transcranial magnetic brain stimulation. BMC Cancer. 2015;8(15):231.CrossRefGoogle Scholar
  40. 40.
    Romano A, D’Andrea G, Minniti G, Mastronardi L, Ferrante L, Fantozzi LM, et al. Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol. 2009;19(12):2798–808.PubMedCrossRefGoogle Scholar
  41. 41.
    Abdullah KG, Lubelski D, Nucifora PG, Brem S. Use of diffusion tensor imaging in glioma resection. Neurosurg Focus. 2013;34(4):E1.PubMedCrossRefGoogle Scholar
  42. 42.
    González-Darder JM, González-López P, Talamantes F, Quilis V, Cortés V, García-March G, et al. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010;28(2):E5.PubMedCrossRefGoogle Scholar
  43. 43.
    Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12(11):997–1003.PubMedCrossRefGoogle Scholar
  44. 44.
    Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol. 2011;12(11):1062–70.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu JS, Gong X, Song YY, Zhuang DX, Yao CJ, Qiu TM, et al. 3.0-T intraoperative magnetic resonance imaging-guided resection in cerebral glioma surgery: interim analysis of a prospective, randomized, triple-blind, parallel-controlled trial. Neurosurgery. 2014;61(Suppl 1):145–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Brell M, Roldán P, González E, Llinàs P, Ibáñez J. Implantación de la primera resonancia intraoperatoria en un hospital de la red sanitaria pública española: experiencia inicial, viabilidad y dificultades en nuestro entorno. Neurocirugia (Astur). 2013;24(1):11–21.Google Scholar
  47. 47.
    Senft C, Seifert V, Hermann E, Franz K, Gasser T. Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery. Neurosurgery. 2008;63(4 Suppl 2):257–66 (discussion 266–7).Google Scholar
  48. 48.
    Díez Valle R, Slof J, Galván J, Arza C, Romariz C, Vidal C, et al. Estudio observacional retrospectivo sobre la efectividad del ácido 5-aminolevulínico en la cirugíaa de los gliomas malignos en España (Estudio VISIONA). Neurologia. 2014;29(3):131–8.Google Scholar
  49. 49.
    Gil-Salú JL, Arraez MÁ, Barcia JA, Piquer J, Rodríguez de Lope A, Villalba Martínez G, et al. Recomendaciones sobre el uso de ácido 5-aminolevulínico en la cirugíaa de os gliomas malignos. Documento de consenso. Neurocirugia (Astur). 2013;24(4):163–9.Google Scholar
  50. 50.
    Slof J, Díez Valle R, Galván J. Análisis coste-efectividad de la cirugía del glioma maligno guiada por fluorescencia con ácido 5-aminolevulínico. Neurologia. 2015;30(3):163–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Eljamel S. 5-ALA fluorescence image guided resection of glioblastoma multiforme: a meta-analysis of the literature. Int J Mol Sci. 2015;16(5):10443–56.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Coburger J, Hagel V, Wirtz CR, König R. Surgery for glioblastoma: impact of the combined use of 5-aminolevulinic acid and intraoperative MRI on extent of resection and survival. PLoS One. 2015;10(6):e0131872.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Meyer FB, Bates LM, Goerss SJ, Friedman JA, Windschitl WL, Duffy JR, et al. Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo Clin Proc. 2001;76(7):677–87.PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang YD, Dai RY, Chen Z, Zhang YH, He XZ, Zhou J. Efficacy and safety of carmustine wafers in the treatment of glioblastoma multiforme: a systematic review. Turk Neurosurg. 2014;24(5):639–45.PubMedGoogle Scholar
  55. 55.
    Bregy A, Shah AH, Diaz MV, Pierce HE, Ames PL, Diaz D, et al. The role of Gliadel wafers in the treatment of high-grade gliomas. Expert Rev Anticancer Ther. 2013;13(12):1453–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Wong ET, Lok E, Gautam S, Swanson KD. Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br J Cancer. 2015;113(2):232–41.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wong ET, Lok E, Swanson KD. Clinical benefit in recurrent glioblastoma from adjuvant NovoTTF-100A and TCCC after temozolomide and bevacizumab failure: a preliminary observation. Cancer Med. 2015;4(3):383–91.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Walker MD, Green SB, Byar DP, Alexander E Jr, Batzdorf U, Brooks WH, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. 1980;303(23):1323–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Coffey RJ, Lunsford LD, Taylor FH. Survival after stereotactic biopsy of malignant gliomas. Neurosurgery. 1988;22(3):465–73.PubMedCrossRefGoogle Scholar
  60. 60.
    Nelson DF, Diener-West M, Horton J, Chang CH, Schoenfeld D, Nelson JS. Combined modality approach to treatment of malignant gliomas–re-evaluation of RTOG 7401/ECOG 1374 with long-term follow-up: a joint study of the Radiation Therapy Oncology Group and the Eastern Cooperative Oncology Group. NCI Monogr. 1988;6:279–84.PubMedGoogle Scholar
  61. 61.
    Chan JL, Lee SW, Fraass BA, Normolle DP, Greenberg HS, Junck LR, et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol. 2002;20(6):1635–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Narayana A, Yamada J, Berry S, Shah P, Hunt M, Gutin PH, et al. Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results. Int J Radiat Oncol Biol Phys. 2006;64(3):892–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Keime-Guibert F, Chinot O, Taillandier L, Cartalat-Carel S, Frenay M, Kantor G, et al. Radiotherapy for glioblastoma in the elderly. N Engl J Med. 2007;356(15):1527–35.PubMedCrossRefGoogle Scholar
  64. 64.
    Paulino AC, Mai WY, Chintagumpala M, Taher A, Teh BS. Radiation-induced malignant gliomas: is there a role for reirradiation? Int J Radiat Oncol Biol Phys. 2008;71(5):1381–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Souhami L, Seiferheld W, Brachman D, Podgorsak EB, Werner-Wasik M, Lustig R, et al. Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys. 2004;60(3):853–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Selker RG, Shapiro WR, Burger P, Blackwood MS, Arena VC, Gilder JC, et al. The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery. 2002;51(2):343–55 (discussion 355–7).Google Scholar
  67. 67.
    Castro JR, Phillips TL, Prados M, Gutin P, Larson DA, Petti PL, et al. Neon heavy charged particle radiotherapy of glioblastoma of the brain. Int J Radiat Oncol Biol Phys. 1997;38(2):257–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Fitzek MM, Thornton AF, Rabinov JD, Lev MH, Pardo FS, Munzenrider JE, et al. Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: results of a phase II prospective trial. J Neurosurg. 1999;91(2):251–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Athanassiou H, Synodinou M, Maragoudakis E, Paraskevaidis M, Verigos C, Misailidou D, et al. Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol. 2005;23(10):2372–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Gerber DE, Grossman SA, Zeltzman M, Parisi MA, Kleinberg L. The impact of thrombocytopenia from temozolomide and radiation in newly diagnosed adults with high-grade gliomas. Neuro Oncol. 2007;9(1):47–52 (Epub 2006 Nov 15).PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Armstrong TS, Wefel JS, Wang M, Gilbert MR, Won M, Bottomley A, et al. Net clinical benefit analysis of radiation therapy oncology group 0525: a phase III trial comparing conventional adjuvant temozolomide with dose-intensive temozolomide in patients with newly diagnosed glioblastoma. J Clin Oncol. 2013;31(32):4076–84.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Poulsen HS, Urup T, Michaelsen SR, Staberg M, Villingshøj M, Lassen U. The impact of bevacizumab treatment on survival and quality of life in newly diagnosed glioblastoma patients. Cancer Manag Res. 2014;26(6):373–87.CrossRefGoogle Scholar
  73. 73.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.PubMedCrossRefGoogle Scholar
  74. 74.
    Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.Google Scholar
  75. 75.
    Iwamoto FM, Abrey LE, Beal K, Gutin PH, Rosenblum MK, Reuter VE, et al. Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology. 2009;73(15):1200–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Miranda PC, Mekonnen A, Salvador R, Basser PJ. Predicting the electric field distribution in the brain for the treatment of glioblastoma. Phys Med Biol. 2014;59(15):4137–47.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Turner SG, Gergel T, Wu H, Lacroix M, Toms SA. The effect of field strength on glioblastoma multiforme response in patients treated with the NovoTTF™-100A system. World J Surg Oncol. 2014;22(12):162.CrossRefGoogle Scholar
  78. 78.
    Lacouture ME, Davis ME, Elzinga G, Butowski N, Tran D, Villano JL, et al. Characterization and management of dermatologic adverse events with the NovoTTF-100A System, a novel anti-mitotic electric field device for the treatment of recurrent glioblastoma. Semin Oncol. 2014;41(Suppl 4):S1–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Omar AI. Tumor treating field therapy in combination with bevacizumab for the treatment of recurrent glioblastoma. J Vis Exp. 2014;92:e51638.PubMedGoogle Scholar
  80. 80.
    Laws ER, Parney IF, Huang W, Anderson F, Morris AM, Asher A, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg. 2003;99(3):467–73.PubMedCrossRefGoogle Scholar
  81. 81.
    Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26(25):4189–99.PubMedCrossRefGoogle Scholar
  82. 82.
    Reifenberger G, Hentschel B, Felsberg J, Schackert G, Simon M, Schnell O, et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer. 2012;131(6):1342–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27(25):4150–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Hartmann C, Hentschel B, Simon M, Westphal M, Schackert G, Tonn JC, et al. Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res. 2013;19(18):5146–57.PubMedCrossRefGoogle Scholar
  85. 85.
    Labussière M, Boisselier B, Mokhtari K, Di Stefano AL, Rahimian A, Rossetto M, et al. Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology. 2014;83(13):1200–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 2005;11(4):1462–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res. 2003;63(20):6962–70.PubMedGoogle Scholar
  88. 88.
    Rahmathulla G, Hovey EJ, Hashemi-Sadraei N, Ahluwalia MS. Bevacizumab in high-grade gliomas: a review of its uses, toxicity assessment, and future treatment challenges. Onco Targets Ther. 2013;15(6):371–89.CrossRefGoogle Scholar
  89. 89.
    Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 2014;6(11):1359–70.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hernández-Pedro NY, Rangel-López E, Magaña-Maldonado R, de la Cruz VP, del Angel AS, Pineda B, et al. Application of nanoparticles on diagnosis and therapy in gliomas. Biomed Res Int. 2013;2013:351031.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2016

Authors and Affiliations

  1. 1.Servicio de NeurocirugíaHospital Universitario de BurgosBurgosSpain
  2. 2.Servicio de Oncología RadioterápicaHospital Universitario de BurgosBurgosSpain

Personalised recommendations