Advertisement

Clinical and Translational Oncology

, Volume 18, Issue 2, pp 189–195 | Cite as

Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma

  • A. RaciborskaEmail author
  • K. Bilska
  • K. Drabko
  • E. Michalak
  • R. Chaber
  • M. Pogorzała
  • K. Połczyńska
  • G. Sobol
  • M. Wieczorek
  • K. Muszyńska-Rosłan
  • M. Rychlowska-Pruszyńska
  • C. Rodriguez-Galindo
  • M. Dziuk
Research Article

Abstract

Background

Response to chemotherapy is a prognostic factor in patients with Ewing sarcoma (ES); the role of FDG PET to predict response in these patients has not been thoroughly investigated. We evaluated the diagnostic accuracy and the potential of FDG PET to predict response to chemotherapy (CHT).

Materials and methods

We analyzed data of 50 patients with ES (median age 12.6 years). All patients were treated with neoadjuvant CHT, and underwent surgery for local control. All patients had 18F-FDG PET/CT at diagnosis and after induction CHT, prior to local control. We compared response assessed by histopathology with FDG PET using standard uptake values (SUVs).

Results

Median SUV at diagnosis (SUV I) was 5 (range 1.2–17), and median SUV after neoadjuvant chemotherapy (SUV II) was 1.8 (range 0–8.4). Median SUV II/I ratio was 0.3 (range 0–1). SUV at diagnosis was significantly lower in patients with good histological response than in patients with poor histological response (median 3.8 vs. 7.2, p 0.02). We found a significant correlation between SUV II and outcome; the positive predictive value of an SUV II ≤ 2.5 for favorable response was 84.21 %, and the median SUV II was significantly higher in patients with disease progression (2.3 vs. 1.6, p = 0.04). In multivariate analysis, necrosis and SUV II were significant predictors of outcome.

Conclusions

18F-FDG PET demonstrates high diagnostic accuracy for response to initial chemotherapy in patients with ES and it correlates with outcome. The role of FDG PET in predicting response and outcome should be further investigated.

Keywords

Ewing sarcoma 18F-FDG PET Necrosis Chemotherapy 

Notes

Acknowledgments

Special thanks to the Children’s Medical Care Foundation, and Mr Bjoern Martinoff, President for the international support.

Compliance with ethical standards

Conflict of interest

Nothing to declare.

References

  1. 1.
    Rodriguez-Galindo C, Liu T, Krasin MJ, Wu J, Billups CA, Daw NC, et al. Analysis of prognostic factors in Ewing sarcoma family of tumors: review of St.Jude Children’s Research Hospital studies. Cancer. 2007;110(2):375–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Rodriguez-Galindo C, Billups CA, Kun LE, Rao BN, Pratt CB, Merchant TE, et al. Survival after recurrence of Ewing tumors. Cancer. 2002;94(2):561–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Raciborska A, Bilska K, Drabko K, Chaber R, Sobol G, Pogorzała M, et al. Validation of a multimodal treatment protocol for Ewing sarcoma—a report from the Polish Pediatric Oncology Group. Pediatr Blood Cancer. 2014;61(12):2170–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Ladenstein R, Pötschger U, Le Deley MC, Whelan J, Paulussen M, Oberlin O, et al. Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol. 2010;28:3284–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Rodriguez-Galindo C, Navid F, Liu T, Billups CA, Rao BN, Krasin MJ. Prognostic factors for local and distant control in Ewing sarcoma family of tumors. Ann Oncol. 2008;19(4):814–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Shankar AG, Ashley S, Craft AW, Pinkerton CR. Outcome after relapse in an unselected cohort of children and adolescents with Ewing sarcoma. Med Pediatr Oncol. 2003;40:141–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Raciborska A, Bilska K, Drabko K, Chaber R, Pogorzala M, Wyrobek E, et al. Vincristine, irinotecan and temozolomide in patients with refractory Ewing sarcoma. Pediatr Blood Cancer. 2013;60(10):1621–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Jurgens C, Weston C, Lewis I, Whelan J, Paulussen M, Oberlin O, et al. Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial. Pediatr Blood Cancer. 2006;47(1):22–9.CrossRefGoogle Scholar
  9. 9.
    Le Deley MC, Paulussen M, Lewis I, Brennan B, Ranft A, Whelan J, et al. Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 trial. J Clin Oncol. 2014;32(23):2440–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Paulussen M, Craft AW, Lewis I, Hackshaw A, Douglas C, Dunst J, et al. Results of the EICESS-92 Study: two randomized trials of Ewing’s sarcoma treatment—cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol. 2008;26(27):4385–93.CrossRefPubMedGoogle Scholar
  11. 11.
    Leavey PJ, Mascarenhas L, Marina N, Chen Z, Krailo M, Miser J, et al. Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51:334–8.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Biswas B, Rastogi S, Khan SA, Mohanti BK, Sharma DN, Sharma MC, et al. Outcomes and prognostic factors for Ewing-family tumors of the extremities. J Bone Joint Surg Am. 2014;96(10):841–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Franzius C, Sciuk J, Brinkschmidt C, Jürgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med. 2000;25(11):874–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Treglia G, Salsano M, Stefanelli A, Mattoli MV, Giordano A, Bonomo L. Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol. 2012;41(3):249–56.CrossRefPubMedGoogle Scholar
  15. 15.
    Gerth HU, Juergens KU, Dirksen U, Gerss J, Schober O, Franzius C. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med. 2007;48(12):1932–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Furth C, Amthauer H, Denecke T, Ruf J, Henze G, Gutberlet M. Impact of whole-body MRI and FDG-PET on staging and assessment of therapy response in a patient with Ewing sarcoma. Pediatr Blood Cancer. 2006;47(5):607–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Newman EN, Jones RL, Hawkins DS. An evaluation of [F-18]-fluorodeoxy-d-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer. 2013;60(7):1113–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Völker T, Denecke T, Steffen I, Misch D, Schönberger S, Plotkin M, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol. 2007;25(34):5435–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Gyorke T, Zajic T, Lange A, Schäfer O, Moser E, Makó E, et al. Impact of FDG PET staging of Ewing sarcoma and primitive neuroectodermal tumors. Nucl Med Commun. 2006;27:17–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Franzius C, Sciuk J, Daldrup-Link HE, Jürgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27(9):1305–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Sharma P, Khangembam BC, Suman KC, Singh H, Rastogi S, Khan SA, et al. Diagnostic accuracy of 18F-FDP PET/CT detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging. 2013;40(7):1036–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Mody RJ, Bui C, Hutchinson RJ, Yanik GA, Castle VP, Frey KA, et al. FDG PET imaging of childhood sarcomas. Pediatr Blood Cancer. 2010;54(2):222–7.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Pieper S, Ranft A, Braun-Munzinger G, Jurgens H, Paulussen M, Dirksen U. Ewing’s Tumors over the age of 40–a retrospective analysis of 47 patients treated according to the international clinical trials EICESS 92 and EURO-E.W.I.N.G. 99. Onkologie. 2008;31:657–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35(8):1581–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad EU 3rd, et al. [18F] Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol. 2005;23(34):8828–34.CrossRefPubMedGoogle Scholar
  26. 26.
    Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [18F]-Fluorodeoxy-d-Glucose positron emission tomography. Cancer. 2002;94(12):3277–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Brisse H, Ollivier L, Edeline V, Pacquement H, Michon J, Glorion C, et al. Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol. 2004;34(8):595–605.CrossRefPubMedGoogle Scholar
  28. 28.
    Gupta K, Pawaskar A, Basu S, Rajan MG, Asopa RV, Arora B, et al. Potential role of FDG PET imaging in predicting metastatic potential and assessment of therapeutic response to neoadjuvant chemotherapy in Ewing sarcoma family of tumors. Clin Nucl Med. 2011;36(11):973–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Gaston LL, Di Bella C, Slavin J, Hicks RJ, Choong PF. 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiol. 2011;40(8):1007–15.CrossRefPubMedGoogle Scholar
  30. 30.
    Iagaru A, Chwala S, Menendez L, Conti PS. 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun. 2006;27:795–802.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2015

Authors and Affiliations

  • A. Raciborska
    • 1
    Email author
  • K. Bilska
    • 1
  • K. Drabko
    • 2
  • E. Michalak
    • 3
  • R. Chaber
    • 4
  • M. Pogorzała
    • 5
  • K. Połczyńska
    • 6
  • G. Sobol
    • 7
  • M. Wieczorek
    • 8
  • K. Muszyńska-Rosłan
    • 9
  • M. Rychlowska-Pruszyńska
    • 1
  • C. Rodriguez-Galindo
    • 10
  • M. Dziuk
    • 11
  1. 1.Department of Surgical Oncology for Children and YouthInstitute of Mother and ChildWarsawPoland
  2. 2.Department of Pediatric Hematology, Oncology and TransplantMedical University of LublinLublinPoland
  3. 3.Department of PathologyInstitute of Mother and ChildWarsawPoland
  4. 4.Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow TransplantationWroclaw Medical UniversityWroclawPoland
  5. 5.Department of Pediatric Hematology and Oncology Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland
  6. 6.Department of Pediatric Hematology and OncologyMedical University of GdanskGdanskPoland
  7. 7.Unit of Pediatric Oncology, Hematology and ChemotherapyMedical University of SilesiaKatowicePoland
  8. 8.Department of Pediatrics and OncologyPediatric and Oncological Children’s CentreChorzowPoland
  9. 9.Department of Pediatric Oncology and HematologyMedical University of Bialystok Children’s, Clinical Hospital of L. ZamenhofBialystokPoland
  10. 10.Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders CenterHarvard Medical SchoolBostonUSA
  11. 11.Nuclear Medicine Department, Military Institute of Medicine, PET-CT DepartmentMazovian Medical CentreWarsawPoland

Personalised recommendations