Clinical and Translational Oncology

, Volume 17, Issue 5, pp 339–357 | Cite as

Immunotherapy in prostate cancer: review of the current evidence

  • E. M. Fernández-García
  • F. E. Vera-Badillo
  • B. Perez-Valderrama
  • A. S. Matos-Pita
  • I. Duran
Educational Series – Blue Series Advances in Translational Oncology

Abstract

Prostate cancer is the most common male malignancy in the Western world. Once it metastasizes, it is incurable. The current gold standard for metastatic disease is the combined docetaxel/prednisone regimen. Prostate cancer shows several characteristics that make it a suitable candidate for immunotherapy, as recently exemplified by the approval of sipuleucel-T, the first vaccine to treat any malignancy. Here, we review different tumor-associated antigen immunotherapy strategies currently being investigated, from a humanized radiolabeled monoclonal antibody (J-591) that targets radiation into tumor cells, moving on to vaccines and through to immunomodulator agents such as anti-CPLA-4 and anti-PD-1 monoclonal antibodies that activate T-cell responses via immune checkpoint inhibition. We explore different opinions on the best approach to integrate immunotherapy into existing standard therapies, such as androgen-deprivation therapy, radiotherapy or chemotherapy, and review different combination sequences, patient types and time points during the course of the disease to achieve a lasting immune response. We present data from recent phase III clinical trials that call for a change in trial endpoint design with immunotherapy agents, from the traditional tumor progression to overall survival and how such trials should include immune response measurements as secondary or intermediate endpoints to help identify patient clinical benefit in the earlier phases of treatment. Finally, we join in the recent questioning on the validity of RECIST criteria to measure response to immunotherapeutic agents, as initial increases in the size of tumors/lymph nodes, which are part of a normal immune response, could be categorized as disease progression under RECIST.

Keywords

Prostate cancer Immunotherapy Metastatic castration-resistant prostate cancer (mCRPC) Prostate-specific antigen (PSA) Prostate-specific membrane antigen (PSMA) Prostatic acid phosphatase (PAP) 

Notes

Conflict of interest

EM Fernández-García, FE Vera-Badillo, B Perez-Valderrama, A Soto Matos-Pita and I Duran have no conflicts of interest related to this article.

References

  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29 (Epub 2014/01/09).CrossRefPubMedGoogle Scholar
  2. 2.
    Loblaw DA, Virgo KS, Nam R, Somerfield MR, Ben-Josef E, Mendelson DS, et al. Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of clinical oncology practice guideline. J Clin Oncol. 2007;25(12):1596–605 (Epub 2007/04/04).CrossRefPubMedGoogle Scholar
  3. 3.
  4. 4.
    Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65(2):467–79 (Epub 2013/12/11).CrossRefPubMedGoogle Scholar
  5. 5.
    Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48 (Epub 2012/12/12).CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Danila DC, Morris MJ, de Bono JS, Ryan CJ, Denmeade SR, Smith MR, et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J Clin Oncol. 2010;28(9):1496–501 (Epub 2010/02/18).CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13(10):983–92 (Epub 2012/09/22).CrossRefPubMedGoogle Scholar
  8. 8.
    Logothetis CJ, Basch E, Molina A, Fizazi K, North SA, Chi KN, et al. Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol. 2012;13(12):1210–7 (Epub 2012/11/13).CrossRefPubMedGoogle Scholar
  9. 9.
    Scher HI, Beer TM, Higano CS, Anand A, Taplin ME, Efstathiou E, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet. 2010;375(9724):1437–46 (Epub 2010/04/20).CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324(5928):787–90 (Epub 2009/04/11).CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367(13):1187–97 (Epub 2012/08/17).CrossRefPubMedGoogle Scholar
  12. 12.
    Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23 (Epub 2013/07/19).CrossRefPubMedGoogle Scholar
  13. 13.
    de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54 (Epub 2010/10/05).CrossRefPubMedGoogle Scholar
  14. 14.
    Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351(15):1513–20 (Epub 2004/10/08).CrossRefPubMedGoogle Scholar
  15. 15.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12 (Epub 2004/10/08).CrossRefPubMedGoogle Scholar
  16. 16.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22 (Epub 2010/09/08).CrossRefPubMedGoogle Scholar
  17. 17.
    Wang X, Yu J, Sreekumar A, Varambally S, Shen R, Giacherio D, et al. Autoantibody signatures in prostate cancer. N Engl J Med. 2005;353(12):1224–35 (Epub 2005/09/24).CrossRefPubMedGoogle Scholar
  18. 18.
    Bradford TJ, Wang X, Chinnaiyan AM. Cancer immunomics: using autoantibody signatures in the early detection of prostate cancer. Urol Oncol. 2006;24(3):237–42 (Epub 2006/05/09).CrossRefPubMedGoogle Scholar
  19. 19.
    Delves PJ, Roitt IM. The immune system. First of two parts. N Engl J Med. 2000;343(1):37–49 (Epub 2000/07/07).CrossRefPubMedGoogle Scholar
  20. 20.
    Delves PJ, Roitt IM. The immune system. Second of two parts. N Engl J Med. 2000;343(2):108–17 (Epub 2000/07/13).CrossRefPubMedGoogle Scholar
  21. 21.
    Nemazee D. Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol. 2006;6(10):728–40 (Epub 2006/09/26).CrossRefPubMedGoogle Scholar
  22. 22.
    Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev. 2009;229(1):307–21 (Epub 2009/05/12).CrossRefPubMedGoogle Scholar
  23. 23.
    Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339 (Epub 2006/05/30).CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5 (Epub 2008/10/11).CrossRefPubMedGoogle Scholar
  25. 25.
    Lan KH, Liu YC, Shih YS, Tsaid CL, Yen SH, Lan KL. A DNA vaccine against cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) prevents tumor growth. Biochem Biophys Res Commun. 2013;440(2):222–8 (Epub 2013/09/18).CrossRefPubMedGoogle Scholar
  26. 26.
    Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22(13):2522–31 (Epub 2004/06/03).CrossRefPubMedGoogle Scholar
  27. 27.
    Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23(21):4591–601 (Epub 2005/04/20).CrossRefPubMedGoogle Scholar
  28. 28.
    Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19(18):5182–91 (Epub 2013/05/30).CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Kwek SS, Dao V, Roy R, Hou Y, Alajajian D, Simko JP, et al. Diversity of antigen-specific responses induced in vivo with CTLA-4 blockade in prostate cancer patients. J Immunol. 2012;189(7):3759–66 (Epub 2012/09/08).CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    US Food and Drug Administration. FDA labelling information—Provenge. FDA website [online]. 2010. http://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM210031.pdf.
  31. 31.
    Beer TMS, Higano SF, Tejwani CS, Dorff S, Stankevich TB, Lowy E. Phase I trial of ipilimumab (IPI) alone and in combination with radiotherapy (XRT) in patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol 2008;26 (May 20 suppl; abstr 5004).Google Scholar
  32. 32.
    Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY, et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother. 2013;62(1):137–47 (Epub 2012/08/07).CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–94 (Epub 2006/07/01).CrossRefPubMedGoogle Scholar
  34. 34.
    Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–9 (Epub 2009/06/19).CrossRefPubMedGoogle Scholar
  35. 35.
    Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 2006;16(2):126–33 (Epub 2006/02/14).CrossRefPubMedGoogle Scholar
  36. 36.
    Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993;90(8):3539–43 (Epub 1993/04/15).CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Simons JW, Sacks N. Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol. 2006;24(5):419–24 (Epub 2006/09/12).CrossRefPubMedGoogle Scholar
  38. 38.
    Higano C, Saad F, Somer B, Curti B, Petrylak DP, Drake CG, et al. A phase III trial of GVAX immunotherapy for prostate cancer vs. docetaxel plus prednisone in asymptomatic castration-resistant prostate cancer (CRPC). Genitourinary Cancer Symposium: Proc Am Soc Clin Oncol. 2009 abstract # LBA150.Google Scholar
  39. 39.
    Small ED, Gerritsen WR. A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC). Orlando. In: American Society of Clinical Oncology–Genitourinary Cancers Symposium; 2009. p. 26–8.Google Scholar
  40. 40.
    Drake CG. Immunotherapy for prostate cancer: walk, don’t run. J Clin Oncol. 2009;27(25):4035–7 (Epub 2009/07/29).CrossRefPubMedGoogle Scholar
  41. 41.
    Michael A, Ball G, Quatan N, Wushishi F, Russell N, Whelan J, et al. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin Cancer Res. 2005;11(12):4469–78 (Epub 2005/06/17).CrossRefPubMedGoogle Scholar
  42. 42.
    Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, et al. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer. 2004;91(4):688–94 (Epub 2004/07/29).PubMedCentralPubMedGoogle Scholar
  43. 43.
    Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol. 2000;38(2):208–17 (Epub 2000/07/15).CrossRefPubMedGoogle Scholar
  44. 44.
    Gregor PW, Pedraza A, Orlandi F. A xenogeneic PSMA DNA vaccine for patients with non-castrate metastatic (NCMPC) and castrate metastatic prostate cancer (CMPC)—a phase I trial of proof of principle. J Clin Oncol. 2007;25:3073S.Google Scholar
  45. 45.
    Chudley L, McCann K, Mander A, Tjelle T, Campos-Perez J, Godeseth R, et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8 (+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother. 2012;61(11):2161–70 (Epub 2012/06/26).CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol. 2009;27(25):4047–54 (Epub 2009/07/29).CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother. 2010;33(6):639–47 (Epub 2010/06/17).CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Gnjatic S, Altorki NK, Tang DN, Tu SM, Kundra V, Ritter G, et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin Cancer Res. 2009;15(6):2130–9 (Epub 2009/03/12).CrossRefPubMedGoogle Scholar
  49. 49.
    Hirayama M, Nishikawa H, Nagata Y, Tsuji T, Kato T, Kageyama S, et al. Overcoming regulatory T-cell suppression by a lyophilized preparation of Streptococcus pyogenes. Eur J Immunol. 2013;43(4):989–1000 (Epub 2013/02/26).CrossRefPubMedGoogle Scholar
  50. 50.
    Smith HA, Rekoske BT, McNeel DG. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses. Vaccine. 2014;32(15):1707–15 (Epub 2014/02/05).CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J. 2011;17(5):359–71 (Epub 2011/09/29).CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Arlen PM, Dahut WL, Gulley JL. Immunotherapy for prostate cancer: what’s the future? Hematol Oncol Clin North Am. 2006;20(4):965–83, xi. (Epub 2006/07/25).CrossRefPubMedGoogle Scholar
  53. 53.
    Arlen PM, Skarupa L, Pazdur M, Seetharam M, Tsang KY, Grosenbach DW, et al. Clinical safety of a viral vector based prostate cancer vaccine strategy. J Urol. 2007;178(4 Pt 1):1515–20 (Epub 2007/08/21).CrossRefPubMedGoogle Scholar
  54. 54.
    Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105 (Epub 2010/01/27).CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Miller G, Lahrs S, Pillarisetty VG, Shah AB, DeMatteo RP. Adenovirus infection enhances dendritic cell immunostimulatory properties and induces natural killer and T-cell-mediated tumor protection. Cancer Res. 2002;62(18):5260–6 (Epub 2002/09/18).PubMedGoogle Scholar
  56. 56.
    Lubaroff DM, Konety BR, Link B, Gerstbrein J, Madsen T, Shannon M, et al. Phase I clinical trial of an adenovirus/prostate-specific antigen vaccine for prostate cancer: safety and immunologic results. Clin Cancer Res. 2009;15(23):7375–80 (Epub 2009/11/19).CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Siemens DR, Elzey BD, Lubaroff DM, Bohlken C, Jensen RJ, Swanson AK, et al. Cutting edge: restoration of the ability to generate CTL in mice immune to adenovirus by delivery of virus in a collagen-based matrix. J Immunol. 2001;166(2):731–5 (Epub 2001/01/06).CrossRefPubMedGoogle Scholar
  58. 58.
    Lubaroff DM, Williams RD, Vaena D, Joudi F, Brown J, Smith M. An ongoing phase II trial of an adenovirus/PSA vaccine for prostate cancer. 103rd Annual Meeting of the American Association for Cancer research. Chicago IL: Cancer research, 2012.Google Scholar
  59. 59.
    Fong L, Kwek SS, O’Brien S, Kavanagh B, McNeel DG, Weinberg V, et al. Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res. 2009;69(2):609–15 (Epub 2009/01/17).CrossRefPubMedGoogle Scholar
  60. 60.
    Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21 (Epub 2013/03/29).CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15(7):700–12 (Epub 2014/05/17).CrossRefPubMedGoogle Scholar
  62. 62.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54 (Epub 2012/06/05).CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Yee DS, Lowrance WT, Eastham JA, Maschino AC, Cronin AM, Rabbani F. Long-term follow-up of 3-month neoadjuvant hormone therapy before radical prostatectomy in a randomized trial. BJU Int. 2010;105(2):185–90 (Epub 2009/07/15).CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Gravina GL, Festuccia C, Galatioto GP, Muzi P, Angelucci A, Ronchi P, et al. Surgical and biologic outcomes after neoadjuvant bicalutamide treatment in prostate cancer. Urology. 2007;70(4):728–33 (Epub 2007/11/10).CrossRefPubMedGoogle Scholar
  65. 65.
    Womble PR, VanVeldhuizen PJ, Nisbet AA, Reed GA, Thrasher JB, Holzbeierlein JM. A phase II clinical trial of neoadjuvant ketoconazole and docetaxel chemotherapy before radical prostatectomy in high risk patients. J Urol. 2011;186(3):882–7 (Epub 2011/07/28).CrossRefPubMedGoogle Scholar
  66. 66.
    Narita S, Tsuchiya N, Kumazawa T, Maita S, Numakura K, Obara T, et al. Short-term clinicopathological outcome of neoadjuvant chemohormonal therapy comprising complete androgen blockade, followed by treatment with docetaxel and estramustine phosphate before radical prostatectomy in Japanese patients with high-risk localized prostate cancer. World J Surg Oncol. 2012;10:1 (Epub 2012/01/05).CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Ross RW, Galsky MD, Febbo P, Barry M, Richie JP, Xie W, et al. Phase 2 study of neoadjuvant docetaxel plus bevacizumab in patients with high-risk localized prostate cancer: a prostate cancer clinical trials consortium trial. Cancer. 2012;118(19):4777–84 (Epub 2012/01/28).CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Mathew P, Pisters LL, Wood CG, Papadopoulos JN, Williams DL, Thall PF, et al. Neoadjuvant platelet derived growth factor receptor inhibitor therapy combined with docetaxel and androgen ablation for high risk localized prostate cancer. J Urol. 2009;181(1):81–7 (Discussion 7). (Epub 2008/11/18).CrossRefPubMedGoogle Scholar
  69. 69.
    Fong L, Weinberg VK, Chan SE, Corman JM, Amling CL, Stephenson RA. Neoadjuvant sipuleucel-T in localized prostate cancer: effects of immune cells within the prostate tumor microenvironment. J Clin Oncol. 2012;30 [suppl; abstr 2564].Google Scholar
  70. 70.
    Vuky J, Corman JM, Porter C, Olgac S, Auerbach E, Dahl K. Phase II trial of neoadjuvant docetaxel and CG1940/CG8711 followed by radical prostatectomy in patients with high-risk clinically localized prostate cancer. Oncologist. 2013;18(6):687–8 (Epub 2013/06/07).CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Drake CG, Doody AD, Mihalyo MA, Huang CT, Kelleher E, Ravi S, et al. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell. 2005;7(3):239–49 (Epub 2005/03/16).CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Mercader M, Bodner BK, Moser MT, Kwon PS, Park ES, Manecke RG, et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci USA. 2001;98(25):14565–70 (Epub 2001/12/06).CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Antonarakis ES, Kibel A, Tyler RC, McCoy C, Wang Y, Sheikh NA, et al. Randomized phase II trial evaluating the optimal sequencing of sipuleucel-T and androgen-deprivation therapy (ADT) in patients (pts) with biochemically recurrent prostate cancer (BRPC) [abstract]. J Clin Oncol 31, (suppl 6; abstr 34).Google Scholar
  74. 74.
    Madan RA, Gulley JL, Schlom J, Steinberg SM, Liewehr DJ, Dahut WL, et al. Analysis of overall survival in patients with nonmetastatic castration-resistant prostate cancer treated with vaccine, nilutamide, and combination therapy. Clin Cancer Res. 2008;14(14):4526–31 (Epub 2008/07/17).CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Granberg C, Thompson RH, Quevedo JF. Down-staging of locally-advanced prostate cancer with anti-CTLA-4 monoclonal antibody prior to radical prostatectomy. J Clin Oncol. 2009;27:16103 (abstr).Google Scholar
  76. 76.
    Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol. 2010;22(3):113–24 (Epub 2010/04/21).CrossRefPubMedGoogle Scholar
  77. 77.
    Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65 (Epub 2013/01/08).CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res. 2005;11(9):3353–62 (Epub 2005/05/04).CrossRefPubMedGoogle Scholar
  79. 79.
    Gerritsen WR, Kwon ED, Fizazi K, Bossi A, Van den Eertwegh A, Logothetis C. CA184-043: A randomized, multicenter, double-blind phase 3 trial comparing overall survival (OS) in patients (pts) with post-docetaxel castration-resistant prostate cancer (CRPC) and bone metastases treated with ipilimumab (ipi) vs. placebo (pbo), each following single-dose radiotherapy (RT) [abstract]. European Cancer Congress, abstr 2850.Google Scholar
  80. 80.
    van den Eertwegh AJ, Versluis J, van den Berg HP, Santegoets SJ, van Moorselaar RJ, van der Sluis TM, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13(5):509–17 (Epub 2012/02/14).CrossRefPubMedGoogle Scholar
  81. 81.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47 (Epub 2008/12/23).CrossRefPubMedGoogle Scholar
  82. 82.
    Scher HI, Halabi S, Tannock I, Morris M, Sternberg CN, Carducci MA, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the prostate cancer clinical trials working group. J Clin Oncol. 2008;26(7):1148–59 (Epub 2008/03/04).CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol. 2000;18(23):3894–903 (Epub 2000/12/01).PubMedGoogle Scholar
  84. 84.
    Gulley JL, Madan RA, Heery CR. Therapeutic vaccines and immunotherapy in castration-resistant prostate cancer: current progress and clinical applications. Am Soc Clin Oncol Educ Book. 2013. (Epub 2013/05/30).Google Scholar
  85. 85.
    Bilusic M, Gulley JL. Endpoints, patient selection, and biomarkers in the design of clinical trials for cancer vaccines. Cancer Immunol Immunother. 2012;61(1):109–17 (Epub 2011/11/29).CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412–20 (Epub 2009/11/26).CrossRefPubMedGoogle Scholar
  87. 87.
    Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS. Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res. 2013;19(14):3936–43 (Epub 2013/06/08).CrossRefPubMedCentralPubMedGoogle Scholar
  88. 88.
    Hoos A. Evolution of end points for cancer immunotherapy trials. Ann Oncol. 2012;23(Suppl 8):viii47–52. doi: 10.1093/annonc/mds263.CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2014

Authors and Affiliations

  • E. M. Fernández-García
    • 1
  • F. E. Vera-Badillo
    • 2
  • B. Perez-Valderrama
    • 3
  • A. S. Matos-Pita
    • 1
  • I. Duran
    • 2
    • 3
  1. 1.Pharma Mar S.A.MadridSpain
  2. 2.Department of Medical Oncology and HematologyPrincess Margaret Hospital, University Health NetworkTorontoCanada
  3. 3.Department of Medical OncologyUniversity Hospital “Virgen del Rocío”SevilleSpain

Personalised recommendations