Clinical and Translational Oncology

, Volume 17, Issue 2, pp 121–132 | Cite as

Two death pathways induced by sorafenib in myeloma cells: Puma-mediated apoptosis and necroptosis

  • A. Ramírez-Labrada
  • N. López-Royuela
  • V. Jarauta
  • P. Galán-Malo
  • G. Azaceta
  • L. Palomera
  • J. Pardo
  • A. Anel
  • I. Marzo
  • J. Naval
Research Article



Sorafenib is a multikinase inhibitor that targets the MAPK pathway and is currently used for the treatment of hepatocellular and renal carcinoma. Recently, it has been shown that sorafenib is also cytotoxic to multiple myeloma (MM) cells. Here, we have further analyzed the mechanism of sorafenib-induced death in MM cells.


Cell death induced by sorafenib in MM cell lines and in plasma cells from MM patients was evaluated by analysis of gene expression by RT-MLPA and quantitative PCR, protein levels and functionality by Western blot and flow cytometry and gene silencing with siRNA.


Cell death was characterized by phosphatidylserine exposure, ΔΨm loss, cytochrome c release and caspase activation, hallmarks of apoptosis. DL50 at 24 h ranged from 6 to 10 µM. Ex vivo treatment with 20 µM sorafenib induced apoptosis in around 80 % myeloma cells from six multiple myeloma patients. Sorafenib induced caspase-dependent degradation of Bcl-xL and Mcl-1 proteins, destabilizing the mitochondria and speeding up the development of apoptosis. Sorafenib treatment increased levels of Puma at mRNA and protein level and gene silencing with siRNA confirmed a relevant role for Puma in the induction of apoptosis. Co-treatment with the pan-caspase inhibitor Z-VAD-fmk prevented cell death to a variable degree depending on the cell line. In RPMI 8226 cells, Z-VAD-fmk prevented most of sorafenib-induced death. However, death in MM.1S was only prevented by co-incubation with both Z-VAD-fmk and the RIP1K inhibitor necrostatin-1, indicating that under conditions of inefficient caspase activation, sorafenib induces death by necroptosis.


Our results demonstrate a key role for Puma in the triggering of sorafenib-induced apoptosis and that this drug can also induce death by necroptosis in multiple myeloma cells.


Sorafenib Puma Mcl-1 Bcl-xL Apoptosis Necroptosis 



Multiple myeloma


3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide




Mitochondrial transmembrane potential


3,3′-Dihexyloxacarbocyanine iodide


Tetramethylrhodamine ethyl ester



We gratefully acknowledge Bayer for the gift of sorafenib and Dr. Atanasio Pandiella and Dolors Colomer for his advice and support. This study was supported by grants SAF2010-14920 and ISCIII-RTICC RD06/0020 from Ministerio de Ciencia e Innovación, and B16 from Gobierno de Aragón/Fondo Social Europeo.

Conflict of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Bergsagel PL, Mateos MV, Gutierrez NC, Rajkumar SV, JF San Miguel. Improving overall survival and overcoming adverse prognosis in the treatment of cytogenetically high-risk multiple myeloma. Blood. 2013;121(6):884–92.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Hasskarl J. Sorafenib: targeting multiple tyrosine kinases in cancer. Recent Results Cancer Res. 2014;201:145–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5(10):835–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K, et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004;104(9):2886–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Ogata A, Chauhan D, Teoh G, Treon SP, Urashima M, Schlossman RL, et al. IL-6 triggers cell growth via the Ras-dependent mitogen-activated protein kinase cascade. J Immunol. 1997;159(5):2212–21.PubMedGoogle Scholar
  7. 7.
    Ferlin M, Noraz N, Hertogh C, Brochier J, Taylor N, Klein B. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br J Haematol. 2000;111(2):626–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101(12):4667–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Chatterjee M, Stuhmer T, Herrmann P, Bommert K, Dorken B, Bargou RC. Combined disruption of both the MEK/ERK and the IL-6R/STAT3 pathways is required to induce apoptosis of multiple myeloma cells in the presence of bone marrow stromal cells. Blood. 2004;104(12):3712–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE, et al. Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene. 2010;29(8):1190–202.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kharaziha P, De Raeve H, Fristedt C, Li Q, Gruber A, Johnsson P, et al. Sorafenib has potent antitumor activity against multiple myeloma in vitro, ex vivo, and in vivo in the 5T33MM mouse model. Cancer Res. 2012;72(20):5348–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005;24(46):6861–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Rahmani M, Davis EM, Bauer C, Dent P, Grant S. Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005;280(42):35217–27.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang W, Konopleva M, Ruvolo VR, McQueen T, Evans RL, Bornmann WG, et al. Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008;22(4):808–18.PubMedCrossRefGoogle Scholar
  15. 15.
    Dudgeon C, Peng R, Wang P, Sebastiani A, Yu J, Zhang L. Inhibiting oncogenic signaling by sorafenib activates PUMA via GSK3beta and NF-kappaB to suppress tumor cell growth. Oncogene. 2012;31(46):4848–58.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Sonntag R, Gassler N, Bangen JM, Trautwein C, Liedtke C. Pro-apoptotic Sorafenib signaling in murine hepatocytes depends on malignancy and is associated with PUMA expression in vitro and in vivo. Cell Death Dis. 2014;5:e1030.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Gomez-Benito M, Balsas P, Carvajal-Vergara X, Pandiella A, Anel A, Marzo I, et al. Mechanism of apoptosis induced by IFN-alpha in human myeloma cells: role of Jak1 and Bim and potentiation by rapamycin. Cell Signal. 2007;19(4):844–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Balsas P, Lopez-Royuela N, Galan-Malo P, Anel A, Marzo I, Naval J. Cooperation between Apo2L/TRAIL and bortezomib in multiple myeloma apoptosis. Biochem Pharmacol. 2009;77(5):804–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Lopez-Royuela N, Perez-Galan P, Galan-Malo P, Yuste VJ, Anel A, Susin SA, et al. Different contribution of BH3-only proteins and caspases to doxorubicin-induced apoptosis in p53-deficient leukemia cells. Biochem Pharmacol. 2010;79(12):1746–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Gomez-Benito M, Marzo I, Anel A, Naval J. Farnesyltransferase inhibitor BMS-214662 induces apoptosis in myeloma cells through PUMA up-regulation, Bax and Bak activation, and Mcl-1 elimination. Mol Pharmacol. 2005;67(6):1991–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Vela L, Gonzalo O, Naval J, Marzo I. Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem. 2013;288(7):4935–46.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Roberts PJ, Der CJ. Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26(22):3291–310.PubMedCrossRefGoogle Scholar
  24. 24.
    Ge NL, Rudikoff S. Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood. 2000;96(8):2856–61.PubMedGoogle Scholar
  25. 25.
    Bezieau S, Devilder MC, Avet-Loiseau H, Mellerin MP, Puthier D, Pennarun E, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat. 2001;18(3):212–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005;105(1):317–23.PubMedCrossRefGoogle Scholar
  27. 27.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.PubMedCrossRefGoogle Scholar
  28. 28.
    Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs. 2009;69(2):223–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell. 2011;43(3):432–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Weinlich R, Dillon CP, Green DR. Ripped to death. Trends Cell Biol. 2011;21(11):630–7.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Moriwaki K, Chan FK. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013;27(15):1640–9.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal. 2007;19(10):2056–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene. 2008;27(Suppl 1):S71–83.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Roue G, Lopez-Guerra M, Milpied P, Perez-Galan P, Villamor N, Montserrat E, et al. Bendamustine is effective in p53-deficient B-cell neoplasms and requires oxidative stress and caspase-independent signaling. Clin Cancer Res. 2008;14(21):6907–15.PubMedCrossRefGoogle Scholar
  35. 35.
    Wang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P. Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res. 2007;13(16):4934–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Yordanova A, Hose D, Neben K, Witzens-Harig M, Gutgemann I, Raab MS, et al. Sorafenib in patients with refractory or recurrent multiple myeloma. Hematol Oncol. 2013;31(4):197–200.PubMedCrossRefGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2014

Authors and Affiliations

  • A. Ramírez-Labrada
    • 1
  • N. López-Royuela
    • 1
  • V. Jarauta
    • 1
  • P. Galán-Malo
    • 1
  • G. Azaceta
    • 2
  • L. Palomera
    • 2
  • J. Pardo
    • 3
    • 4
    • 5
  • A. Anel
    • 1
  • I. Marzo
    • 1
  • J. Naval
    • 1
  1. 1.Departamento de Bioquimica, Biologia Molecular y Celular, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain
  2. 2.Servicio de HematologíaHospital Clínico Universitario Lozano-BlesaZaragozaSpain
  3. 3.Immune Effector Cells Group (ICE), Aragón Health Research Institute (IIS Aragón), Edificio CIBA, Biomedical Research Centre of Aragón (CIBA)Universidad de ZaragozaZaragozaSpain
  4. 4.Aragón I+D Foundation (ARAID), Government of AragonZaragozaSpain
  5. 5.Nanoscience Institute of Aragon (INA)Universidad de ZaragozaZaragozaSpain

Personalised recommendations