Advertisement

Clinical and Translational Oncology

, Volume 16, Issue 2, pp 220–223 | Cite as

Tackling gliomas with nanoformulated antineoplastic drugs: suitability of hyaluronic acid nanoparticles

  • M. Ganau
Correspondence

Background

The development of drug delivery systems able to induce accumulation of a prodrug or its metabolites in aggressive tumours is providing new approaches to achieve enhanced antitumor activity while reducing systemic toxicity. Only recently, the integration of core concepts from the field of biotechnology, nanotechnology and pharmacodynamics provided us with new insights on the possibility to identify anti-neoplastic targets and evaluate the theoretical feasibility of producing drug-incorporated hyaluronic acid (HA)-nanoparticles. Indeed, gliomas could represent the perfect proof of concept for nanoformulated drugs due to the intrinsic characteristics of those tumours: mainly, the high aggressiveness, poor prognosis and high degree of chemo-resistance. A thorough analysis of the current therapeutic armamentarium available for primary brain tumours, and the possible targets of HA-nanoparticles, is perfectly suited to better understand the opportunities provided by such...

Keywords

Hyaluronic Acid Glioma Cell Malignant Glioma Primary Brain Tumour Glioma Invasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful to Mrs Gloria Mognon for revision of the language and editing of the manuscript in its final version.

Conflict of interest

The author does not report any financial, personal or professional conflict of interest concerning the materials and methods used in this study or the findings specified in this paper.

References

  1. 1.
    Ohgaki H, Kleihues P. Population based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64:479–89.PubMedGoogle Scholar
  2. 2.
    Deorah S, Lynch CF, Sibenaller ZA, Ryken TC. Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results program, 1973 to 2001. Neurosurg Focus. 2006;20(4):E1.PubMedCrossRefGoogle Scholar
  3. 3.
    Murovic JA, Chang SD. Outcomes after stereotactic radiosurgery and various adjuvant treatments for recurrent glioblastoma multiforme: a current literature review and comparison of multiple factors that impact outcome. World Neurosurg. 2010;78(6):588–91.CrossRefGoogle Scholar
  4. 4.
    Shapiro LQ, Beal K, Goenka A, Karimi S, Iwamoto FM, Yamada Y, et al. Patterns of failure after concurrent bevacizumab and hypofractionated stereotactic radiation therapy for recurrent high-grade glioma. Int J Radiat Oncol Biol Phys. 2013;85(3):636–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Villano JL, Seery TE, Bressler LR. Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol. 2009;64:647–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Emerich DF, Winn SR, Snodgrass P, LaFreniere D, Agostino M, Wiens T, et al. Injectable chemotherapeutic microspheres and glioma II: enhanced survival following implantation into deep inoperable tumors. Pharm Res. 2000;17:776–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vivo drug release and in vivo drug residence in blood properties. J Control Release. 2002;79:123–35.PubMedCrossRefGoogle Scholar
  9. 9.
    Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Kundu P, Mohanty C, Sahoo SK. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater. 2012;8(7):2670–87.PubMedCrossRefGoogle Scholar
  11. 11.
    Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly(ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine. 2013;9(4):492–503.PubMedGoogle Scholar
  12. 12.
    Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Sarkar N, Banerjee J, Hanson AJ, Elegbede AI, Rosendahl T, Krueger AB, et al. Matrix metalloproteinase-assisted triggered release of liposomal contents. Bioconjug Chem. 2008;19(1):57–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Gu G, Xia H, Hu Q, Liu Z, Jiang M, Kang T, et al. PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials. 2013;34(1):196–208.PubMedCrossRefGoogle Scholar
  15. 15.
    Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid antitumor bioconjugate. Bioconjug Chem. 1999;10:755–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Freed LE, Vunjack-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology. 1994;12:689–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Ganau M, Prisco L, Pescador D, Ganau L. Challenging new targets for CNS-HIV infection. Front Neurol. 2012;3:43.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Greish K, Thiagarajan G, Ghandehari H. In vivo methods of nanotoxicology. Methods Mol Biol. 2012;926:235–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Knudson CB, Knudson W. Hyaluronan binding proteins in development, tissue homeostasis, and diseases. FASEB J. 1993;7:1233–41.PubMedGoogle Scholar
  20. 20.
    Rooney P, Kumar S, Pointing J, Wang M. The role of hyaluronan in tumor neovascularization. Int J Cancer. 1995;60:632–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Delpech B, Maingonnat C, Girard N, Chauzy C, Maunoury R, Olivier A, et al. Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumor stroma. Eur J Cancer. 1993;29:1012–7.CrossRefGoogle Scholar
  22. 22.
    Akiyama Y, Jung S, Salhia B, Lee S, Hubbard S, Taylor M, et al. Hyaluronate receptors mediating glioma cell migration and proliferation. J Neurooncol. 2001;53:115–27.PubMedCrossRefGoogle Scholar
  23. 23.
    Knüpfer MM, Poppenborg H, Hotfilder M, Kühnel K, Wolff JE, Domula M. CD44 expression and hyaluronic acid binding of malignant glioma cells. Clin Exp Metastasis. 1999;17(1):71–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Junker N, Latini S, Petersen LN, Kristjansen PE. Expression and regulation patterns of hyaluronidases in small cell lung cancer and glioma lines. Oncol Rep. 2003;10:609–16.PubMedGoogle Scholar
  25. 25.
    Cho HJ, Yoon HY, Koo H, Ko SH, Shim JS, Cho JH, et al. Hyaluronic acid-ceramide-based optical/MR dual imaging nanoprobe for cancer diagnosis. J Control Release. 2012;162(1):111–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Gilg AG, Tye SL, Tolliver LB, Wheeler WG, Visconti RP, Duncan JD, et al. Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors. Clin Cancer Res. 2008;14:1804–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeong YI, Kim ST, Jin SG, Ryu HH, Jin YH, Jung TY, et al. Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J Pharm Sci. 2008;97:1268–76.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, et al. TGF-β receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell. 2010;18(6):655–68.PubMedCrossRefGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of CagliariCagliariItaly

Personalised recommendations