Advertisement

Clinical and Translational Oncology

, Volume 16, Issue 3, pp 243–256 | Cite as

Guidelines for biomarker testing in gastroenteropancreatic neuroendocrine neoplasms: a national consensus of the Spanish Society of Pathology and the Spanish Society of Medical Oncology

  • R. García-Carbonero
  • F. Vilardell
  • P. Jiménez-Fonseca
  • R. González-Campora
  • E. González
  • M. Cuatrecasas
  • J. Capdevila
  • I. Aranda
  • J. Barriuso
  • X. Matías-Guiu
Special Article

Abstract

The annual incidence of neuroendocrine tumours in the Caucasian population ranges from 2.5 to 5 new cases per 100,000 inhabitants. Gastroenteropancreatic neuroendocrine tumours is a family of neoplasms widely variable in terms of anatomical location, hormone composition, clinical syndromes they cause and in their biological behaviour. This high complexity and clinical heterogeneity, together with the known difficulty of predicting their behaviour from their pathological features, are reflected in the many classifications that have been developed over the years in this field. This article reviews the main tissue and clinical biomarkers and makes recommendations for their use in medical practice. This document represents a consensus reached jointly by the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Pathology (SEAP).

Keywords

Gastroenteropancreatic neuroendocrine tumours Biomarkers Ki-67 Guidelines Chromogranin A Synaptophysin Octreotide scan 

Notes

Acknowledgments

The members of the Working Group on Biomarkers SEOM-SEAP are Ramón Colomer, Pilar García-Alfonso, Pilar Garrido, Ricardo González Cámpora, José Palacios and Enrique de Álava.

Conflict of interest

SEOM and SEAP acknowledge the financial support for this project of unrestricted grants from Pfizer Oncology and Novartis Oncology. Jorge Barriuso has been partially funded by The Spanish Association Against Cancer. The authors state that, at the time of drafting and revision the text of the manuscript, they were unaware of the names of the laboratories who have supported this project, so this support has not influenced the content of this article.

References

  1. 1.
    Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9:61–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Garcia-Carbonero R, Salazar R, Sevilla I, et al. SEOM clinical guidelines for the diagnosis and treatment of gastroenteropancreatic neuroendocrine tumours (GEP NETS). Clin Transl Oncol. 2011;13:545–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26:3063–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Lawrence B, Gustafsson BI, Chan A et al (2011) The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am 40:1–18, vii.Google Scholar
  5. 5.
    Benavent M, de Miguel MJ, Garcia-Carbonero R. New targeted agents in gastroenteropancreatic neuroendocrine tumors. Target Oncol. 2012;7:99–106.PubMedCrossRefGoogle Scholar
  6. 6.
    Ploeckinger U, Kloeppel G, Wiedenmann B, et al. The German NET-registry: an audit on the diagnosis and therapy of neuroendocrine tumors. Neuroendocrinology. 2009;90:349–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Garcia-Carbonero R, Capdevila J, Crespo-Herrero G, et al. Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE). Ann Oncol. 2010;21:1794–803.PubMedCrossRefGoogle Scholar
  8. 8.
    Williams ED, Sandler M. The classification of carcinoid tumours. Lancet. 1963;1:238–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Oberndorfer S. Karzinoide Tumoren des Dünndarms. Frankfurter Zeitschrift för Pathologie. 1907;1:425–32.Google Scholar
  10. 10.
    Capella C, Heitz PU, Hofler H, et al. Revised classification of neuroendocrine tumours of the lung, pancreas and gut. Virchows Arch. 1995;425:547–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Capella C, Riva C, Rindi G, et al. Histopathology, hormone products, and clinicopathological profile of endocrine tumors of the upper small intestine: a study of 44 cases. Endocrine Pathology. 1991;2:92–110.CrossRefGoogle Scholar
  12. 12.
    Kloppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer. 2011;18(Suppl 1):S1–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol. 2012;36:173–84.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Klimstra DS, Modlin IR, Adsay NV, et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol. 2010;34:300–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Klimstra DS, Modlin IR, Coppola D, et al. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39:707–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Kloppel G, Rindi G, Perren A, et al. The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Arch. 2010;456:595–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Bosman F, Carneiro F, Hruban R, et al. WHO classification of tumours of the disgestive system. France: Lyon; 2010.Google Scholar
  18. 18.
    Adsay V. Ki67 labeling index in neuroendocrine tumors of the gastrointestinal and pancreatobiliary tract: to count or not to count is not the question, but rather how to count. Am J Surg Pathol. 2012;36:1743–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Tang LH, Gonen M, Hedvat C, et al. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Am J Surg Pathol. 2012;36:1761–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Annenkov A, Nishikura K, Domori K, et al. Alpha-methylacyl-coenzyme A racemase expression in neuroendocrine neoplasms of the stomach. Virchows Arch. 2012;461:169–75.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Aizawa M, Kojima M, Gotohda N, et al. Geminin expression in pancreatic neuroendocrine tumors: possible new marker of malignancy. Pancreas. 2012;41:512–7.PubMedCrossRefGoogle Scholar
  22. 22.
    La Rosa S, Marando A, Furlan D, et al. Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol. 2012;36:601–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Chan ES, Alexander J, Swanson PE, et al. PDX-1, CDX-2, TTF-1, and CK7: a reliable immunohistochemical panel for pancreatic neuroendocrine neoplasms. Am J Surg Pathol. 2012;36:737–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Panarelli NC, Yantiss RK, Yeh MM, et al. Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol. 2012;138:211–22.PubMedCrossRefGoogle Scholar
  25. 25.
    Verbeke CS. Endocrine tumours of the pancreas. Histopathology. 2010;56:669–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Fernandes I, Pacheco TR, Costa A, et al. Prognostic significance of AKT/mTOR signaling in advanced neuroendocrine tumors treated with somatostatin analogs. Onco Targets Ther. 2012;5:409–16.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28:245–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang H, Chen Y, Fernandez-Del Castillo C, et al. Heterogeneity in signaling pathways of gastroenteropancreatic neuroendocrine tumors: a critical look at notch signaling pathway. Mod Pathol. 2013;26:139–47.PubMedCrossRefGoogle Scholar
  29. 29.
    Lorenzo PI, Jimenez Moreno CM, Delgado I, et al. Immunohistochemical assessment of Pax8 expression during pancreatic islet development and in human neuroendocrine tumors. Histochem Cell Biol. 2011;136:595–607.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Engel KB, Moore HM. Effects of preanalytical variables on the detection of proteins by immunohistochemistry in formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med. 2011;135:537–43.PubMedGoogle Scholar
  31. 31.
    Bai Y, Tolles J, Cheng H, et al. Quantitative assessment shows loss of antigenic epitopes as a function of pre-analytic variables. Lab Invest. 2011;91:1253–61.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Munakata S, Hendricks JB. Effect of fixation time and microwave oven heating time on retrieval of the Ki-67 antigen from paraffin-embedded tissue. J Histochem Cytochem. 1993;41:1241–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Wester K, Wahlund E, Sundstrom C, et al. Paraffin section storage and immunohistochemistry. Effects of time, temperature, fixation, and retrieval protocol with emphasis on p53 protein and MIB1 antigen. Appl Immunohistochem Mol Morphol. 2000;8:61–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Kloppel G, Couvelard A, Perren A, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: towards a standardized approach to the diagnosis of gastroenteropancreatic neuroendocrine tumors and their prognostic stratification. Neuroendocrinology. 2009;90:162–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Rindi G, Bordi C, La Rosa S, et al. Gastroenteropancreatic (neuro)endocrine neoplasms: the histology report. Dig Liver Dis. 2011;43(Suppl 4):S356–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol. 2011;35:853–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Molina R, Alvarez E, Aniel-Quiroga A, et al. Evaluation of chromogranin A determined by three different procedures in patients with benign diseases, neuroendocrine tumors and other malignancies. Tumour Biol. 2011;32:13–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Oberg K. Circulating biomarkers in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer. 2011;18(Suppl 1):S17–25.PubMedCrossRefGoogle Scholar
  39. 39.
    O’Toole D, Salazar R, Falconi M, et al. Rare functioning pancreatic endocrine tumors. Neuroendocrinology. 2006;84:189–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Ardill JE, Erikkson B. The importance of the measurement of circulating markers in patients with neuroendocrine tumours of the pancreas and gut. Endocr Relat Cancer. 2003;10:459–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Feldman JM, O’Dorisio TM. Role of neuropeptides and serotonin in the diagnosis of carcinoid tumors. Am J Med. 1986;81:41–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Witzigmann H, Loracher C, Geissler F, et al. Neuroendocrine tumours of the duodenum. Clinical aspects, pathomorphology and therapy. Langenbecks Arch Surg. 2002;386:525–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Davidson ED, McDougal WS. Elevated serum acid phosphatase levels with rectal carcinoid tumor. Gastroenterology. 1976;70:114–6.PubMedGoogle Scholar
  44. 44.
    Norheim I, Oberg K, Theodorsson-Norheim E, et al. Malignant carcinoid tumors. An analysis of 103 patients with regard to tumor localization, hormone production, and survival. Ann Surg. 1987;206:115–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Service FJ. Hypoglycemic disorders. N Engl J Med. 1995;332:1144–52.PubMedCrossRefGoogle Scholar
  46. 46.
    Roy PK, Venzon DJ, Feigenbaum KM, et al. Gastric secretion in Zollinger-Ellison syndrome. Correlation with clinical expression, tumor extent and role in diagnosis—a prospective NIH study of 235 patients and a review of 984 cases in the literature. Medicine (Baltimore). 2001;80:189–222.CrossRefGoogle Scholar
  47. 47.
    Campana D, Nori F, Piscitelli L, et al. Chromogranin A: is it a useful marker of neuroendocrine tumors? J Clin Oncol. 2007;25:1967–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Lawrence B, Gustafsson BI, Kidd M et al (2011) The clinical relevance of chromogranin A as a biomarker for gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am 40:111–134, viii.Google Scholar
  49. 49.
    Yao JC, Pavel M, Phan AT, et al. Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. J Clin Endocrinol Metab. 2011;96:3741–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Nobels FR, Kwekkeboom DJ, Coopmans W, et al. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones. J Clin Endocrinol Metab. 1997;82:2622–8.PubMedGoogle Scholar
  51. 51.
    O’Toole D, Couvelard A, Rebours V, et al. Molecular markers associated with response to chemotherapy in gastro-entero-pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17:847–56.PubMedCrossRefGoogle Scholar
  52. 52.
    Gilbert JA, Adhikari LJ, Lloyd RV, et al. Molecular markers for novel therapies in neuroendocrine (carcinoid) tumors. Endocr Relat Cancer. 2010;17:623–36.PubMedCrossRefGoogle Scholar
  53. 53.
    O’Toole D, Grossman A, Gross D, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: biochemical markers. Neuroendocrinology. 2009;90:194–202.PubMedCrossRefGoogle Scholar
  54. 54.
    Scarpa A, Mantovani W, Capelli P, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol. 2010;23:824–33.PubMedCrossRefGoogle Scholar
  55. 55.
    Ekeblad S, Skogseid B, Dunder K, et al. Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res. 2008;14:7798–803.PubMedCrossRefGoogle Scholar
  56. 56.
    Fjallskog ML, Lejonklou MH, Oberg KE, et al. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res. 2003;9:1469–73.PubMedGoogle Scholar
  57. 57.
    Bello C, Deprimo SE, Friece C, et al. (2006) Analysis of circulating biomarkers of sunitinib malate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. ASCO Meeting Abstracts 24:Abstract 4045.Google Scholar
  58. 58.
    Rodriguez de Antona C, Grande Pulido E, Leandro-Garcia L, et al. (2012) Evaluation of CYP3A5, VEGF-a, and VEGFR2 polymorphisms as markers of sunitinib toxicity. ASCO Meeting Abstracts 30:Abstract 10546.Google Scholar
  59. 59.
    Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Meric-Bernstam F, Akcakanat A, Chen H, et al. PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res. 2012;18:1777–89.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Kulke MH, Hornick JL, Frauenhoffer C, et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res. 2009;15:338–45.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Alexandraki KI, Kaltsas G. Gastroenteropancreatic neuroendocrine tumors: new insights in the diagnosis and therapy. Endocrine. 2012;41:40–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Oberg K, Eriksson B. Nuclear medicine in the detection, staging and treatment of gastrointestinal carcinoid tumours. Best Pract Res Clin Endocrinol Metab. 2005;19:265–76.PubMedCrossRefGoogle Scholar
  65. 65.
    Bombardieri E, Giammarile F, Aktolun C, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2010;37:2436–46.PubMedCrossRefGoogle Scholar
  66. 66.
    Ambrosini V, Tomassetti P, Castellucci P, et al. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35:1431–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Naji M, Hodolic M, El-Refai S, et al. Endocrine tumors: the evolving role of positron emission tomography in diagnosis and management. J Endocrinol Invest. 2010;33:54–60.PubMedGoogle Scholar
  68. 68.
    Wong KK, Arabi M, Zerizer I, et al. Role of positron emission tomography/computed tomography in adrenal and neuroendocrine tumors: fluorodeoxyglucose and nonfluorodeoxyglucose tracers. Nucl Med Commun. 2011;32:764–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Abgral R, Leboulleux S, Deandreis D, et al. Performance of (18)fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥10%) well-differentiated endocrine carcinoma staging. J Clin Endocrinol Metab. 2011;96:665–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Ambrosini V, Tomassetti P, Rubello D, et al. Role of 18F-dopa PET/CT imaging in the management of patients with 111In-pentetreotide negative GEP tumours. Nucl Med Commun. 2007;28:473–7.PubMedCrossRefGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2013

Authors and Affiliations

  • R. García-Carbonero
    • 1
  • F. Vilardell
    • 2
  • P. Jiménez-Fonseca
    • 3
  • R. González-Campora
    • 4
  • E. González
    • 5
  • M. Cuatrecasas
    • 6
  • J. Capdevila
    • 7
  • I. Aranda
    • 8
  • J. Barriuso
    • 9
  • X. Matías-Guiu
    • 10
  1. 1.Medical Oncology DepartmentVirgen del Rocío University Hospital, Biomedicine Institute of Sevilla (IBIS) [University of Sevilla, CSIC, HUVR]SevilleSpain
  2. 2.Pathology DepartmentUniversity Hospital Arnau de Vilanova, University of Lleida-IRBLLEIDALleidaSpain
  3. 3.Medical Oncology DepartmentUniversity Hospital Central de AsturiasOviedoSpain
  4. 4.Pathology DepartmentUniversity Hospital Virgen MacarenaSevillaSpain
  5. 5.Medical Oncology DepartmentUniversity Hospital Virgen de las NievesGranadaSpain
  6. 6.Pathology DepartmentClinic University HospitalBarcelonaSpain
  7. 7.Medical Oncology DepartmentUniversity Hospital Vall d’HebrónBarcelonaSpain
  8. 8.Pathology DepartmentGeneral University Hospital of AlicanteAlicanteSpain
  9. 9.Medical Oncology DepartmentLa Paz University HospitalMadridSpain
  10. 10.Pathology and Molecular Genetics DepartmentUniversity Hospital Arnau de Vilanova of Lleida, Universitat de Lleida, IRBLLEIDALleidaSpain

Personalised recommendations