Clinical and Translational Oncology

, Volume 14, Issue 12, pp 891–895 | Cite as

Role of gamma-delta T-cells in cancer. Another opening door to immunotherapy

  • Diego Marquez-Medina
  • Joel Salla-Fortuny
  • Antonieta Salud-Salvia
Educational Series – Red Series* NEW TRENDS IN CLINICAL ONCOLOGY


The gamma-delta (γδ) T-cells are a subset of T-lymphocytes characterized by the presence of a surface antigen recognition complex type 2. Those γδ T-cells represent 2–5 % of peripheral T-cells only, but they are common in organs and mucosae, acting as a first defense system in the entries to the organism. The γδ T-cells take part on immune response by direct cytolysis, development of memory phenotypes, and modulation of immune cells, and they have been implied in autoimmune disorders, immune deficiencies, infections, and tumor diseases. We reported the role of γδ T-cells in oncology, focusing in their potential applications for cancer treatment. Experimental designs and clinical trials in the treatment of solid malignancies are extensively reviewed.


Gamma-delta T-cells Immune therapy Non-small cell lung cancer Solid malignancies Zoledronic acid 


Conflict of interest

Authors did not have any conflict of interest in the redaction of this manuscript.


  1. 1.
    Acuto O, Hussey RE, Fitzgerald KA, Protentis JP, Meuer SC, Schlossman SF et al (1983) The human T cell receptor: appearance in ontogeny and biochemical relationship of α and β subunits on IL-2 dependent clones and T cell tumors. Cell 34(3):717–726PubMedCrossRefGoogle Scholar
  2. 2.
    Chien YH, Iwashima M, Kaplan KB, Elliott JF, Davis MM (1987) A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327(6124):677–682PubMedCrossRefGoogle Scholar
  3. 3.
    Hochstenbach F, Brenner MB (1990) Newly identified gamma delta and beta delta T-cell receptors. J Clin Immunol 10(1):1–18PubMedCrossRefGoogle Scholar
  4. 4.
    Porcelli S, Morita CT, Brenner MB (1992) CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360(6404):593–597PubMedCrossRefGoogle Scholar
  5. 5.
    Hayday AC (2000) [Gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026PubMedCrossRefGoogle Scholar
  6. 6.
    Itohara S, Nakanishi N, Kanagawa O, Kubo R, Tonegawa S (1989) Monoclonal antibodies specific to native murine T-cell receptor gamma delta: analysis of gamma delta T cells during thymic ontogeny and in peripheral lymphoid organs. Proc Natl Acad Sci USA 86(13):5094–5098PubMedCrossRefGoogle Scholar
  7. 7.
    Hayday A, Theodoridis E, Ramsburg E, Shires J (2001) Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2(11):997–1003PubMedCrossRefGoogle Scholar
  8. 8.
    Sanchez-Garcia J, Atkins C, Pasvol G, Wilkinson RJ, Colston MJ (1996) Antigen-driven shedding of l-selectin from human gamma delta T cells. Immunology 89(2):213–219PubMedCrossRefGoogle Scholar
  9. 9.
    Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T et al (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15(1):83–93PubMedCrossRefGoogle Scholar
  10. 10.
    Kong Y, Cao W, Xi X, Ma C, Cui L, He W (2009) The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood 114(2):310–317PubMedCrossRefGoogle Scholar
  11. 11.
    Nedellec S, Sabourin C, Bonneville M, Scotet E (2010) NKG2D costimulates human V gamma 9V delta 2 T cell antitumor cytotoxicity through protein kinase C theta-dependent modulation of early TCR-induced calcium and transduction signals. J Immunol 185(1):55–63PubMedCrossRefGoogle Scholar
  12. 12.
    Scotet E, Martinez LO, Grant E, Barbaras R, Jeno P, Guiraud M et al (2005) Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22(1):71–80PubMedCrossRefGoogle Scholar
  13. 13.
    Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392PubMedGoogle Scholar
  14. 14.
    Hirsh MI, Hashiguchi N, Chen Y, Yip L, Junger WG (2006) Surface expression of HSP72 by LPS-stimulated neutrophils facilitates gammadeltaT cell-mediated killing. Eur J Immunol 36(3):712–721PubMedCrossRefGoogle Scholar
  15. 15.
    Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Perigaud C et al (2010) F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. J Immunol 184(12):6920–6928PubMedCrossRefGoogle Scholar
  16. 16.
    Bonneville M, Fournie JJ (2005) Sensing cell stress and transformation through Vgamma9Vdelta2 T cell-mediated recognition of the isoprenoid pathway metabolites. Microbes Infect 7(3):503–509PubMedCrossRefGoogle Scholar
  17. 17.
    Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M et al (2009) DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vgamma9Vdelta2 T cells. Eur J Immunol 39(5):1361–1368PubMedCrossRefGoogle Scholar
  18. 18.
    Ponomarev ED, Dittel BN (2005) Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism. J Immunol 174(8):4678–4687PubMedGoogle Scholar
  19. 19.
    Bonneville M, Scotet E (2006) Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18(5):539–546PubMedCrossRefGoogle Scholar
  20. 20.
    Angelini DF, Borsellino G, Poupot M, Diamantini A, Poupot R, Bernardi G et al (2004) FcgammaRIII discriminates between 2 subsets of Vgamma9Vdelta2 effector cells with different responses and activation pathways. Blood 104(6):1801–1807PubMedCrossRefGoogle Scholar
  21. 21.
    Tokuyama H, Hagi T, Mattarollo SR, Morley J, Wang Q, So HF et al (2008) V gamma 9V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs–rituximab and trastuzumab. Int J Cancer 122(11):2526–2534PubMedCrossRefGoogle Scholar
  22. 22.
    Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T Cells. Science 309(5732):264–268PubMedCrossRefGoogle Scholar
  23. 23.
    Himoudi N, Morgenstern DA et al (2012) Human γδ T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J Immunol 188(4):1708–1716PubMedCrossRefGoogle Scholar
  24. 24.
    Lai X, Shen Y, Zhou D, Sehgal P, Shen L, Simon M et al (2003) Immune biology of macaque lymphocyte populations during mycobacterial infection. Clin Exp Immunol 133(2):182–192PubMedCrossRefGoogle Scholar
  25. 25.
    Kamath AB, Wang L, Das H, Li L, Reinhold VN, Bukowski JF (2003) Antigens in tea-beverage prime human Vgamma 2Vdelta 2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses. Proc Natl Acad Sci USA 100(10):6009–6014PubMedCrossRefGoogle Scholar
  26. 26.
    Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C et al (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198(3):391–397PubMedCrossRefGoogle Scholar
  27. 27.
    Caccamo N, Meraviglia S, Ferlazzo V, Angelini D, Borsellino G, Poccia F et al (2005) Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur J Immunol 35(6):1764–1772PubMedCrossRefGoogle Scholar
  28. 28.
    Turner J, Dockrell HM (1996) Stimulation of human peripheral blood mononuclear cells with live Mycobacterium bovis BCG activates cytolytic CD8+ T cells in vitro. Immunology 87(3):339–342PubMedCrossRefGoogle Scholar
  29. 29.
    Poccia F, Agrati C, Castilletti C, Bordi L, Gioia C, Horejsh D et al (2006) Anti-severe acute respiratory syndrome coronavirus immune responses: the role played by V gamma 9V delta 2 T cells. J Infect Dis 193(9):1244–1249PubMedCrossRefGoogle Scholar
  30. 30.
    Agrati C, Alonzi T, De Santis R, Castilletti C, Abbate I, Capobianchi MR et al (2006) Activation of Vgamma9Vdelta2 T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int Immunol 18(1):11–18PubMedCrossRefGoogle Scholar
  31. 31.
    Kistowska M, Rossy E, Sansano S, Gober HJ, Landmann R, Mori L et al (2008) Dysregulation of the host mevalonate pathway during early bacterial infection activates human TCR gamma delta cells. Eur J Immunol 38(8):2200–2209PubMedCrossRefGoogle Scholar
  32. 32.
    Alexander AA, Maniar A, Cummings JS, Hebbeler AM, Schulze DH, Gastman BR et al (2008) Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res 14(13):4232–4240PubMedCrossRefGoogle Scholar
  33. 33.
    Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H et al (2007) Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol 66(2–3):320–328PubMedCrossRefGoogle Scholar
  34. 34.
    Mattarollo SR, Kenna T, Nieda M, Nicol AJ (2007) Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother 56(8):1285–1297PubMedCrossRefGoogle Scholar
  35. 35.
    Burjanadze M, Condomines M, Reme T, Quittet P, Latry P, Lugagne C et al (2007) In vitro expansion of gamma delta T cells with anti-myeloma cell activity by Phosphostim and IL-2 in patients with multiple myeloma. Br J Haematol 139(2):206–216PubMedCrossRefGoogle Scholar
  36. 36.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353(25):2654–2666PubMedCrossRefGoogle Scholar
  37. 37.
    Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E et al (2005) V gamma 9 V delta 2 T cell response to colon carcinoma cells. J Immunol 175(8):5481–5488PubMedGoogle Scholar
  38. 38.
    Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S et al (2005) Phosphostim-activated gamma delta T cells kill autologous metastatic renal cell carcinoma. J Immunol 174(3):1338–1347PubMedGoogle Scholar
  39. 39.
    Viey E, Lucas C, Romagne F, Escudier B, Chouaib S, Caignard A (2008) Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vgamma9Vdelta2 T cells from renal cell carcinoma patients. J Immunother 31(3):313–323PubMedCrossRefGoogle Scholar
  40. 40.
    Liu Z, Eltoum IE, Guo B, Beck BH, Cloud GA, Lopez RD (2008) Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. J Immunol 180(9):6044–6053PubMedGoogle Scholar
  41. 41.
    Yuasa T, Sato K, Ashihara E, Takeuchi M, Maita S, Tsuchiya N et al (2009) Intravesical administration of gammadelta T cells successfully prevents the growth of bladder cancer in the murine model. Cancer Immunol Immunother 58(4):493–502PubMedCrossRefGoogle Scholar
  42. 42.
    Simoni D, Gebbia N, Invidiata FP, Eleopra M, Marchetti P, Rondanin R et al (2008) Design, synthesis, and biological evaluation of novel aminobisphosphonates possessing an in vivo antitumor activity through a gammadelta-T lymphocytes-mediated activation mechanism. J Med Chem 51(21):6800–6807PubMedCrossRefGoogle Scholar
  43. 43.
    Boedec A, Sicard H, Dessolin J, Herbette G, Ingoure S, Raymond C et al (2008) Synthesis and biological activity of phosphonate analogs and geometric isomers of the highly potent phosphoantigen (E)-1-hydroxy-2-methylbut-2-enyl 4-diphosphate. J Med Chem 51(6):1747–1754PubMedCrossRefGoogle Scholar
  44. 44.
    Das H, Wang L, Kamath A, Bukowski JF (2001) Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 98(5):1616–1618PubMedCrossRefGoogle Scholar
  45. 45.
    Monkkonen H, Ottewell PD, Kuokkanen J, Monkkonen J, Auriola S, Holen I (2007) Zoledronic acid-induced IPP/ApppI production in vivo. Life Sci 81(13):1066–1070PubMedCrossRefGoogle Scholar
  46. 46.
    Caccamo N, Meraviglia S, Cicero G, Gulotta G, Moschella F, Cordova A et al (2008) Aminobisphosphonates as new weapons for gammadelta T Cell-based immunotherapy of cancer. Curr Med Chem 15(12):1147–1153PubMedCrossRefGoogle Scholar
  47. 47.
    Sicard H, Ingoure S, Luciani B, Serraz C, Fournie JJ, Bonneville M et al (2005) In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 175(8):5471–5480PubMedGoogle Scholar
  48. 48.
    Ali Z, Shao L, Halliday L, Reichenberg A, Hintz M, Jomaa H et al (2007) Prolonged (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate-driven antimicrobial and cytotoxic responses of pulmonary and systemic Vgamma2Vdelta2 T cells in macaques. J Immunol 179(12):8287–8296PubMedGoogle Scholar
  49. 49.
    Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K et al (2007) Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. J Immunol 178(7):4304–4314PubMedGoogle Scholar
  50. 50.
    Shojaei H, Oberg HH, Juricke M, Marischen L, Kunz M, Mundhenke C et al (2009) Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res 69(22):8710–8717PubMedCrossRefGoogle Scholar
  51. 51.
    Sato K, Kimura S, Segawa H, Yokota A, Matsumoto S, Kuroda J et al (2005) Cytotoxic effects of gammadelta T cells expanded ex vivo by a third generation bisphosphonate for cancer immunotherapy. Int J Cancer 116(1):94–99PubMedCrossRefGoogle Scholar
  52. 52.
    Casetti R, Perretta G, Taglioni A, Mattei M, Colizzi V, Dieli F et al (2005) Drug-induced expansion and differentiation of V gamma 9V delta 2 T cells in vivo: the role of exogenous IL-2. J Immunol 175(3):1593–1598PubMedGoogle Scholar
  53. 53.
    Gutman D, Epstein-Barash H, Tsuriel M, Golomb G (2012) Alendronate liposomes for antitumor therapy: activation of γδ T cells and inhibition of tumor growth. Adv Exp Med Biol 733:165–179PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou J, Kang N, Cui L, Ba D, He W (2012) Anti-γδ TCR antibody-expanded γδ T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies. Cell Mol Immunol 9(1):34–44PubMedCrossRefGoogle Scholar
  55. 55.
    Dokouhaki P, Han M, Joe B, Li M, Johnston MR, Tsao MS et al (2010) Adoptive immunotherapy of cancer using ex vivo expanded human gammadelta T cells: a new approach. Cancer Lett 297(1):126–136PubMedCrossRefGoogle Scholar
  56. 56.
    Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y et al (2009) Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T-cells in peripheral blood. Cancer Biol Ther 8(16):1540–1549PubMedCrossRefGoogle Scholar
  57. 57.
    Ferrarini M, Heltai S, Pupa SM, Mernard S, Zocchi R (1996) Killing of laminin receptor-positive human lung cancers by tumor infiltrating lymphocytes bearing gammadelta(+) t-cell receptors. J Natl Cancer Inst 88(7):436–441PubMedCrossRefGoogle Scholar
  58. 58.
    Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67(1):5–8PubMedCrossRefGoogle Scholar
  59. 59.
    Kunzmann V, Wilhelm M (2005) Anti-lymphoma effect of gammadelta T cells. Leuk Lymphoma 46(5):671–680PubMedCrossRefGoogle Scholar
  60. 60.
    Dieli F, Caccamo N, Meraviglia S (2008) Advances in immunotherapy of castration-resistant prostate cancer: bisphosphonates, phosphoantigens and more. Curr Opin Investig Drugs 9(10):1089–1094PubMedGoogle Scholar
  61. 61.
    Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD (2005) Ex vivo expanded human Vgamma9Vdelta2+ gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 173(5):1552–1556PubMedCrossRefGoogle Scholar
  62. 62.
    Saito A, Narita M, Yokoyama A, Watanabe N, Tochiki N, Satoh N et al (2007) Enhancement of anti-tumor cytotoxicity of expanded gammadelta T Cells by stimulation with monocyte-derived dendritic cells. J Clin Exp Hematop 47(2):61–72PubMedCrossRefGoogle Scholar
  63. 63.
    Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56(4):469–476PubMedCrossRefGoogle Scholar
  64. 64.
    Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C et al (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57(11):1599–1609PubMedCrossRefGoogle Scholar
  65. 65.
    Kobayashi H, Tanaka Y, Shimmura H, Minato N, Tanabe K (2010) Complete remission of lung metastasis following adoptive immunotherapy using activated autologous gammadelta T-cells in a patient with renal cell carcinoma. Anticancer Res 30(2):575–579PubMedGoogle Scholar
  66. 66.
    Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F et al (2003) Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102(6):2310–2311PubMedCrossRefGoogle Scholar
  67. 67.
    Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C et al (2005) MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells Costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res 65(16):7502–7508PubMedCrossRefGoogle Scholar
  68. 68.
    Mariani S, Muraro M, Pantaleoni F, Fiore F, Nuschak B, Peola S et al (2005) Effector gammadelta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia 19(4):664–670PubMedGoogle Scholar
  69. 69.
    Marten A, Lilienfeld-Toal M, Buchler MW, Schmidt J (2007) Zoledronic acid has direct antiproliferative and antimetastatic effect on pancreatic carcinoma cells and acts as an antigen for delta2 gamma/delta T cells. J Immunother 30(4):370–377PubMedCrossRefGoogle Scholar
  70. 70.
    Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G et al (2007) Targeting human {gamma} delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67(15):7450–7457PubMedCrossRefGoogle Scholar
  71. 71.
    Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G et al (2010) In vivo manipulation of Vgamma9Vdelta2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 161(2):290–297PubMedGoogle Scholar
  72. 72.
    Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70(24):10024–10027PubMedCrossRefGoogle Scholar
  73. 73.
    Kakimi K, Nakajima J, Wada H (2009) Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer. Lung Cancer 65(1):1–8PubMedCrossRefGoogle Scholar
  74. 74.
    Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S et al (2007) HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer Sci 98(9):1424–1430PubMedCrossRefGoogle Scholar
  75. 75.
    Zocchi MR, Ferrarini M, Rugarli C (1990) Selective lysis of the autologous tumor by delta TCS1+ gamma/delta+ tumor-infiltrating lymphocytes from human lung carcinomas. Eur J Immunol 20(12):2685–2689PubMedCrossRefGoogle Scholar
  76. 76.
    Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y et al (2010) A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous gammadelta T cells. Eur J Cardiothorac Surg 37(5):1191–1197PubMedCrossRefGoogle Scholar
  77. 77.
    Sakamoto M, Nakajima J, Murakawa T, Fukami T, Yoshida Y, Murayama T et al (2011) Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expanded gammadeltaTcells: a phase I clinical study. J Immunother 34(2):202–211PubMedCrossRefGoogle Scholar
  78. 78.
    Hannani D, Ma Y, Déchanet-Merville J, Kroemer G, Zitvogel L (2012) Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol 33(5):199–206PubMedCrossRefGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2012

Authors and Affiliations

  • Diego Marquez-Medina
    • 1
  • Joel Salla-Fortuny
    • 1
  • Antonieta Salud-Salvia
    • 1
  1. 1.Medical Oncology DepartmentUniversity Hospital Arnau de VilanovaLleidaSpain

Personalised recommendations