Clinical and Translational Oncology

, Volume 15, Issue 2, pp 87–94 | Cite as

MYC oncogene in myeloid neoplasias

  • M. Dolores Delgado
  • Marta Albajar
  • M. Teresa Gomez-Casares
  • Ana Batlle
  • Javier León


MYC is a transcription factor that regulates many critical genes for cell proliferation, differentiation, and biomass accumulation. MYC is one of the most prevalent oncogenes found to be altered in human cancer, being deregulated in about 50 % of tumors. Although MYC deregulation has been more frequently associated to lymphoma and lymphoblastic leukemia than to myeloid malignancies, a body of evidence has been gathered showing that MYC plays a relevant role in malignancies derived from the myeloid compartment. The myeloid leukemogenic activity of MYC has been demonstrated in different murine models. Not surprisingly, MYC has been found to be amplified or/and deregulated in the three major types of myeloid neoplasms: acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms, including chronic myeloid leukemia. Here, we review the recent literature describing the involvement of MYC in myeloid tumors.


MYC Myeloid neoplasia Acute myeloid leukemia Chronic myeloid leukemia Myelodysplastic syndromes 



This work, in the laboratory of the authors, was provided by grants SAF11-23796 and ISCIII-RETIC RD06/0020/0017 to JL, and FIS 11/00397 to MDD.

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this manuscript.


  1. 1.
    Iwasaki H, Akashi K (2007) Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26:726–740CrossRefPubMedGoogle Scholar
  2. 2.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644CrossRefPubMedGoogle Scholar
  3. 3.
    Tsiftsoglou AS, Bonovolias ID, Tsiftsoglou SA (2009) Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 122:264–280CrossRefPubMedGoogle Scholar
  4. 4.
    Miranda-Saavedra D, Gottgens B (2008) Transcriptional regulatory networks in haematopoiesis. Curr Opin Genet Dev 18:530–535CrossRefPubMedGoogle Scholar
  5. 5.
    Kim SI, Bresnick EH (2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26:6777–6794CrossRefPubMedGoogle Scholar
  6. 6.
    Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC et al (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264CrossRefPubMedGoogle Scholar
  7. 7.
    Oster SK, Ho CS, Soucie EL, Penn LZ (2002) The myc oncogene: marvelouslY complex. Adv Cancer Res 84:81–154CrossRefPubMedGoogle Scholar
  8. 8.
    Eilers M, Eisenman RN (2008) Myc’s broad reach. Genes Dev 22:2755–2766CrossRefPubMedGoogle Scholar
  9. 9.
    Leon J, Ferrandiz N, Acosta JC, Delgado MD (2009) Inhibition of cell differentiation: a critical mechanism for MYC-mediated carcinogenesis? Cell Cycle 8:1148–1157CrossRefPubMedGoogle Scholar
  10. 10.
    Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016CrossRefPubMedGoogle Scholar
  11. 11.
    Vita M, Henriksson M (2006) The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 16:318–330CrossRefPubMedGoogle Scholar
  12. 12.
    Varmus HE (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612CrossRefPubMedGoogle Scholar
  13. 13.
    Sanchez-Beato M, Sanchez-Aguilera A, Piris MA (2003) Cell cycle deregulation in B-cell lymphomas. Blood 101:1220–1235CrossRefPubMedGoogle Scholar
  14. 14.
    Delgado MD, Leon J (2010) Myc roles in hematopoiesis and leukemia. Genes Cancer 1:605–616CrossRefPubMedGoogle Scholar
  15. 15.
    Sheiness D, Bishop JM (1979) DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J Virol 31:514–521PubMedGoogle Scholar
  16. 16.
    Coppola JA, Cole MD (1986) Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature 320:760–763CrossRefPubMedGoogle Scholar
  17. 17.
    Prochownik EV, Kukowska J (1986) Deregulated expression of c-myc by murine erythroleukaemia cells prevents differentiation. Nature 322:848–850CrossRefPubMedGoogle Scholar
  18. 18.
    Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP et al (1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322:748–750CrossRefPubMedGoogle Scholar
  19. 19.
    Delgado MD, Lerga A, Canelles M, Gomez-Casares MT, Leon J (1995) Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene 10:1659–1665PubMedGoogle Scholar
  20. 20.
    Acosta JC, Ferrandiz N, Bretones G, Torrano V, Blanco R et al (2008) Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol 28:7286–7295CrossRefPubMedGoogle Scholar
  21. 21.
    Ryan KM, Birnie GD (1997) Cell-cycle progression is not essential for c-Myc to block differentiation. Oncogene 14:2835–2843CrossRefPubMedGoogle Scholar
  22. 22.
    Gomez-Casares MT, Delgado MD, Lerga A, Crespo P, Quincoces AF et al (1993) Down-regulation of c-myc gene is not obligatory for growth inhibition and differentiation of human myeloid leukemia cells. Leukemia 7:1824–1833PubMedGoogle Scholar
  23. 23.
    Bahram F, Wu S, Oberg F, Luscher B, Larsson LG (1999) Posttranslational regulation of Myc function in response to phorbol ester/interferon-gamma-induced differentiation of v-Myc-transformed U-937 monoblasts. Blood 93:3900–3912PubMedGoogle Scholar
  24. 24.
    Uribesalgo I, Buschbeck M, Gutierrez A, Teichmann S, Demajo S et al (2011) E-box-independent regulation of transcription and differentiation by MYC. Nat Cell Biol 13:1443–1449CrossRefPubMedGoogle Scholar
  25. 25.
    Guo Y, Niu C, Breslin P, Tang M, Zhang S et al (2009) c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Blood 114:2097–2106CrossRefPubMedGoogle Scholar
  26. 26.
    Thompson A, Zhang Y, Kamen D, Jackson CW, Cardiff RD et al (1996) Deregulated expression of c-myc in megakaryocytes of transgenic mice increases megakaryopoiesis and decreases polyploidization. J Biol Chem 271:22976–22982CrossRefPubMedGoogle Scholar
  27. 27.
    Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM et al (2005) c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood 106:2452–2461CrossRefPubMedGoogle Scholar
  28. 28.
    Xiang Z, Luo H, Payton JE, Cain J, Ley TJ et al (2010) Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest 120:2109–2118CrossRefPubMedGoogle Scholar
  29. 29.
    Beverly LJ, Varmus HE (2009) MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 28:1274–1279CrossRefPubMedGoogle Scholar
  30. 30.
    Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA et al (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436:807–811CrossRefPubMedGoogle Scholar
  31. 31.
    Yu D, Thomas-Tikhonenko A (2002) A non-transgenic mouse model for B-cell lymphoma: in vivo infection of p53-null bone marrow progenitors by a Myc retrovirus is sufficient for tumorigenesis. Oncogene 21:1922–1927CrossRefPubMedGoogle Scholar
  32. 32.
    Yu D, Allman D, Goldschmidt MH, Atchison ML, Monroe JG et al (2003) Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood 101:1950–1955CrossRefPubMedGoogle Scholar
  33. 33.
    Kawagoe H, Kandilci A, Kranenburg TA, Grosveld GC (2007) Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res 67:10677–10685CrossRefPubMedGoogle Scholar
  34. 34.
    Hogstrand K, Hejll E, Sander B, Rozell B, Larsson LG et al (2012) Inhibition of the intrinsic but not the extrinsic apoptosis pathway accelerates and drives MYC-driven tumorigenesis towards acute myeloid leukemia. PLoS ONE 7:e31366CrossRefPubMedGoogle Scholar
  35. 35.
    Skoda RC, Tsai SF, Orkin SH, Leder P (1995) Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 181:1603–1613CrossRefPubMedGoogle Scholar
  36. 36.
    Smith DP, Bath ML, Harris AW, Cory S (2005) T-cell lymphomas mask slower developing B-lymphoid and myeloid tumours in transgenic mice with broad haematopoietic expression of MYC. Oncogene 24:3544–3553CrossRefPubMedGoogle Scholar
  37. 37.
    Smith DP, Bath ML, Metcalf D, Harris AW, Cory S (2006) MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood 108:653–661CrossRefPubMedGoogle Scholar
  38. 38.
    Vardiman JW, Brunning RD, Arber DA, LeBeau MM, Porwit A et al (2008) Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on Cancer, Lyon, pp 18–37Google Scholar
  39. 39.
    Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7:441–453CrossRefPubMedGoogle Scholar
  40. 40.
    Xie S, Lin H, Sun T, Arlinghaus RB (2002) Jak2 is involved in c-Myc induction by Bcr-Abl. Oncogene 21:7137–7146CrossRefPubMedGoogle Scholar
  41. 41.
    Gomez-Casares MT, Vaque JP, Lemes A, Molero T, Delgado MD et al (2004) C-myc expression in cell lines derived from chronic myeloid leukemia. Haematologica 89:241–243PubMedGoogle Scholar
  42. 42.
    Lugo TG, Witte ON (1989) The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol 9:1263–1270PubMedGoogle Scholar
  43. 43.
    Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70:901–910CrossRefPubMedGoogle Scholar
  44. 44.
    Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL (1994) Differential complementation of Bcr-Abl point mutants with c-Myc. Science 264:424–426CrossRefPubMedGoogle Scholar
  45. 45.
    Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8:2796–2808CrossRefPubMedGoogle Scholar
  46. 46.
    Handa H, Hegde UP, Kotelnikov VM, Mundle SD, Dong LM et al (1997) Bcl-2 and c-myc expression, cell cycle kinetics and apoptosis during the progression of chronic myelogenous leukemia from diagnosis to blastic phase. Leuk Res 21:479–489CrossRefPubMedGoogle Scholar
  47. 47.
    Beck Z, Bacsi A, Kovacs E, Kiss J, Kiss A et al (1998) Changes in oncogene expression implicated in evolution of chronic granulocytic leukemia from its chronic phase to acceleration. Leuk Lymphoma 30:293–306PubMedGoogle Scholar
  48. 48.
    Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T et al (2003) Chronic myelogenous leukemia molecular signature. Oncogene 22:3952–3963CrossRefPubMedGoogle Scholar
  49. 49.
    Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T et al (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21:494–504CrossRefPubMedGoogle Scholar
  50. 50.
    Albajar M, Gomez-Casares MT, Llorca J, Mauleon I, Vaque JP et al (2011) MYC in chronic myeloid leukemia: induction of aberrant DNA synthesis and association with poor response to imatinib. Mol Cancer Res 9:564–576CrossRefPubMedGoogle Scholar
  51. 51.
    Lucas CM, Harris RJ, Giannoudis A, Copland M, Slupsky JR et al (2011) Cancerous inhibitor of PP2A (CIP2A) at diagnosis of chronic myeloid leukemia is a critical determinant of disease progression. Blood 117:6660–6668CrossRefPubMedGoogle Scholar
  52. 52.
    Johansson B, Fioretos T, Mitelman F (2002) Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107:76–94CrossRefPubMedGoogle Scholar
  53. 53.
    Brazma D, Grace C, Howard J, Melo JV, Holyoke T et al (2007) Genomic profile of chronic myelogenous leukemia: imbalances associated with disease progression. Genes Chromosomes Cancer 46:1039–1050CrossRefPubMedGoogle Scholar
  54. 54.
    Sears RC (2004) The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3:1133–1137CrossRefPubMedGoogle Scholar
  55. 55.
    Porro A, Iraci N, Soverini S, Diolaiti D, Gherardi S et al (2011) c-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassette transporter genes in chronic myelogenous leukemia CD34 + hematopoietic progenitor cells. Mol Cancer Res 9:1054–1066CrossRefPubMedGoogle Scholar
  56. 56.
    Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113:1619–1630CrossRefPubMedGoogle Scholar
  57. 57.
    Gomez-Casares MT, Garcia-Alegria E, Lopez-Jorge CE, Ferrandiz N, Blanco R, et al. (2012) MYC antagonizes the differentiation induced by imatinib in chronic myeloid leukemia cells through downregulation of p27KIP1. Oncogene. doi: 10.1038/onc.2012.246
  58. 58.
    Theophile K, Buesche G, Kreipe H, Bock O (2008) The expression levels of telomerase catalytic subunit hTERT and oncogenic MYC in essential thrombocythemia are affected by the molecular subtype. Ann Hematol 87:263–268CrossRefPubMedGoogle Scholar
  59. 59.
    Watanabe S, Itoh T, Arai K (1996) JAK2 is essential for activation of c-fos and c-myc promoters and cell proliferation through the human granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells. J Biol Chem 271:12681–12686CrossRefPubMedGoogle Scholar
  60. 60.
    Ferrari S, Narni F, Mars W, Kaczmarek L, Venturelli D et al (1986) Expression of growth-regulated genes in human acute leukemias. Cancer Res 46:5162–5166PubMedGoogle Scholar
  61. 61.
    Calabretta B, Venturelli D, Kaczmarek L, Narni F, Talpaz M et al (1986) Altered expression of G1-specific genes in human malignant myeloid cells. Proc Natl Acad Sci USA 83:1495–1498CrossRefPubMedGoogle Scholar
  62. 62.
    Hirouchi T, Takabatake T, Yoshida K, Nitta Y, Nakamura M et al (2008) Upregulation of c-myc gene accompanied by PU.1 deficiency in radiation-induced acute myeloid leukemia in mice. Exp Hematol 36:871–885CrossRefPubMedGoogle Scholar
  63. 63.
    Court EL, Smith MA, Avent ND, Hancock JT, Morgan LM et al (2004) DNA microarray screening of differential gene expression in bone marrow samples from AML, non-AML patients and AML cell lines. Leuk Res 28:743–753CrossRefPubMedGoogle Scholar
  64. 64.
    Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S et al (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628CrossRefPubMedGoogle Scholar
  65. 65.
    Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X et al (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104:3679–3687CrossRefPubMedGoogle Scholar
  66. 66.
    Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL et al (2008) Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosomes Cancer 47:8–20CrossRefPubMedGoogle Scholar
  67. 67.
    Bazarov AV, Adachi S, Li SF, Mateyak MK, Wei S et al (2001) A modest reduction in c-myc expression has minimal effects on cell growth and apoptosis but dramatically reduces susceptibility to Ras and Raf transformation. Cancer Res 61:1178–1186PubMedGoogle Scholar
  68. 68.
    Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, Maclean KH et al (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16:2530–2543CrossRefPubMedGoogle Scholar
  69. 69.
    Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K et al (2008) Distinct thresholds govern Myc’s biological output in vivo. Cancer Cell 14:447–457CrossRefPubMedGoogle Scholar
  70. 70.
    Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P et al (2004) Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 24:2890–2904CrossRefPubMedGoogle Scholar
  71. 71.
    Rice KL, Hormaeche I, Doulatov S, Flatow JM, Grimwade D et al (2009) Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 114:5499–5511CrossRefPubMedGoogle Scholar
  72. 72.
    Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J et al (2001) MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 61:6480–6486PubMedGoogle Scholar
  73. 73.
    Sait SN, Qadir MU, Conroy JM, Matsui S, Nowak NJ et al (2002) Double minute chromosomes in acute myeloid leukemia and myelodysplastic syndrome: identification of new amplification regions by fluorescence in situ hybridization and spectral karyotyping. Genes Chromosomes Cancer 34:42–47CrossRefPubMedGoogle Scholar
  74. 74.
    Slovak ML, Ho JP, Pettenati MJ, Khan A, Douer D et al (1994) Localization of amplified MYC gene sequences to double minute chromosomes in acute myelogenous leukemia. Genes Chromosomes Cancer 9:62–67CrossRefPubMedGoogle Scholar
  75. 75.
    Rayeroux KC, Campbell LJ (2009) Gene amplification in myeloid leukemias elucidated by fluorescence in situ hybridization. Cancer Genet Cytogenet 193:44–53CrossRefPubMedGoogle Scholar
  76. 76.
    O’Malley F, Rayeroux K, Cole-Sinclair M, Tong M, Campbell LJ (1999) MYC amplification in two further cases of acute myeloid leukemia with trisomy 4 and double minute chromosomes. Cancer Genet Cytogenet 109:123–125CrossRefPubMedGoogle Scholar
  77. 77.
    Thomas L, Stamberg J, Gojo I, Ning Y, Rapoport AP (2004) Double minute chromosomes in monoblastic (M5) and myeloblastic (M2) acute myeloid leukemia: two case reports and a review of literature. Am J Hematol 77:55–61CrossRefPubMedGoogle Scholar
  78. 78.
    Mathew S, Lorsbach RB, Shearer P, Sandlund JT, Raimondi SC (2000) Double minute chromosomes and c-MYC amplification in a child with secondary myelodysplastic syndrome after treatment for acute lymphoblastic leukemia. Leukemia 14:1314–1315CrossRefPubMedGoogle Scholar
  79. 79.
    Storlazzi CT, Fioretos T, Surace C, Lonoce A, Mastrorilli A et al (2006) MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum Mol Genet 15:933–942CrossRefPubMedGoogle Scholar
  80. 80.
    Bruyere H, Sutherland H, Chipperfield K, Hudoba M (2010) Concomitant and successive amplifications of MYC in APL-like leukemia. Cancer Genet Cytogenet 197:75–80CrossRefPubMedGoogle Scholar
  81. 81.
    Bajaj R, Xu F, Xiang B, Wilcox K, Diadamo AJ et al (2011) Evidence-based genomic diagnosis characterized chromosomal and cryptic imbalances in 30 elderly patients with myelodysplastic syndrome and acute myeloid leukemia. Mol Cytogenet 4:3CrossRefPubMedGoogle Scholar
  82. 82.
    Micale L, Augello B, Daniele G, Macchia G, L’Abbate A et al (2011) Amplification of the G allele at SNP rs6983267 in 8q24 amplicons in myeloid malignancies as cause of the lack of MYC overexpression? Blood Cells Mol Dis 47:259–261CrossRefPubMedGoogle Scholar
  83. 83.
    Paulsson K, Lassen C, Kuric N, Billstrom R, Fioretos T et al (2003) MYC is not overexpressed in a case of chronic myelomonocytic leukemia with MYC-containing double minutes. Leukemia 17:813–815CrossRefPubMedGoogle Scholar
  84. 84.
    Sloand EM, Pfannes L, Chen G, Shah S, Solomou EE et al (2007) CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 109:2399–2405CrossRefPubMedGoogle Scholar
  85. 85.
    Stasik CJ, Nitta H, Zhang W, Mosher CH, Cook JR et al (2010) Increased MYC gene copy number correlates with increased mRNA levels in diffuse large B-cell lymphoma. Haematologica 95:597–603CrossRefPubMedGoogle Scholar
  86. 86.
    Vasikova A, Belickova M, Budinska E, Cermak J (2010) A distinct expression of various gene subsets in CD34 + cells from patients with early and advanced myelodysplastic syndrome. Leuk Res 34:1566–1572CrossRefPubMedGoogle Scholar
  87. 87.
    Soucek L, Nasi S, Evan GI (2004) Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 11:1038–1045CrossRefPubMedGoogle Scholar
  88. 88.
    Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ et al (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683CrossRefPubMedGoogle Scholar
  89. 89.
    Fukazawa T, Maeda Y, Matsuoka J, Yamatsuji T, Shigemitsu K et al (2010) Inhibition of Myc effectively targets KRAS mutation-positive lung cancer expressing high levels of Myc. Anticancer Res 30:4193–4200PubMedGoogle Scholar
  90. 90.
    Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI et al (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25:907–916CrossRefPubMedGoogle Scholar
  91. 91.
    Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8:976–990CrossRefPubMedGoogle Scholar
  92. 92.
    Cole MD, Cowling VH (2008) Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 9:810–815CrossRefPubMedGoogle Scholar
  93. 93.
    Moser R, Toyoshima M, Robinson K, Gurley KE, Howie HL et al (2012) MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency. Mol Cancer Res 10:535–545CrossRefPubMedGoogle Scholar
  94. 94.
    Yang D, Liu H, Goga A, Kim S, Yuneva M et al (2010) Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 107:13836–13841CrossRefPubMedGoogle Scholar
  95. 95.
    Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montaña MF, D'Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18:1331–1335CrossRefPubMedGoogle Scholar
  96. 96.
    Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE et al (2012) Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci USA 109:9545–9550CrossRefPubMedGoogle Scholar
  97. 97.
    Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917CrossRefPubMedGoogle Scholar
  98. 98.
    Larramendy ML, Niini T, Elonen E, Nagy B, Ollila J et al (2002) Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis. Haematologica 87:569–577PubMedGoogle Scholar
  99. 99.
    Qian Z, Fernald AA, Godley LA, Larson RA, Le Beau MM (2002) Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 99:14925–14930CrossRefPubMedGoogle Scholar

Copyright information

© Federación de Sociedades Españolas de Oncología (FESEO) 2012

Authors and Affiliations

  • M. Dolores Delgado
    • 1
  • Marta Albajar
    • 1
    • 2
  • M. Teresa Gomez-Casares
    • 3
  • Ana Batlle
    • 1
    • 2
  • Javier León
    • 1
  1. 1.Group of Transcriptional Control and Cancer, Departamento de Biología Molecular, Facultad de MedicinaInstituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria, CSIC, SODERCANSantanderSpain
  2. 2.Servicio de HematologíaHospital Universitario Marqués de Valdecilla, and IFIMAVSantanderSpain
  3. 3.Servicio de Hematología and Unidad de InvestigaciónHospital Dr. NegrínLas PalmasSpain

Personalised recommendations