Clinical and Translational Oncology

, Volume 14, Issue 4, pp 302–311 | Cite as

Curcumin abrogates bile-induced NF-κB activity and DNA damage in vitro and suppresses NF-κB activity whilst promoting apoptosis in vivo, suggesting chemopreventative potential in Barrett’s oesophagus

  • Nihit Rawat
  • Ali Alhamdani
  • Elizabeth McAdam
  • James Cronin
  • Zak Eltahir
  • Paul Lewis
  • Paul Griffiths
  • John N. Baxter
  • Gareth J. S. JenkinsEmail author
Research Articles



Curcumin has been suggested to possess anti-neoplastic properties. As oesophageal adenocarcinoma (OA) and Barrett’s oesophagus (BO) represent a neoplastic series, we postulated that curcumin supplementation may slow neoplastic progression at this site. Our aim was to investigate the effects of curcumin in vitro and in vivo on markers of oesophageal cancer progression.


We investigated the in vitro ability of curcumin to prevent bile acid-induced DNA damage using micronucleus assay and nuclear factor-kappaB (NF-κB) activity in the oesophageal cell lines (OE33) using real-time PCR of the extracted RNA. We also analysed NF-κB p65 activation in curcumin-pre-treated OE33 cells exposed to deoxycholic acid (DCA) using ELISA. In another pilot study, BO patients took a daily 500 mg curcumin tablet for 7 days prior to their endoscopy. In biopsies collected from these patients (n=33, 16 curcumin, 17 control), we examined NF-κB-driven gene expression (interleukin (IL)-8, inhibitor-kappaB (I-κB)) using real-time PCR of the extracted RNA from the biopsy sample. The apoptotic frequency was assessed by counting the number of apoptotic bodies in the epithelial cells from the Barrett’s tissue with and without curcumin.


In vitro, curcumin (50 μM) significantly abrogated DNA damage and NF-κB activity induced by bile. Pretreating OE33 cells with curcumin (50 μM) completely abolished the ability of DCA (300 μM) to activate NF-κB. In vivo, IL-8 expression was non-significantly suppressed in the curcumin-supplemented patients compared to the squamous control tissue, whilst also showing a doubling in the apoptotic frequency compared to non-supplemented control patients.


Curcumin abrogated bile-driven effects in vitro. The in vivo data also suggests that curcumin supplementation had beneficial effects (increased apoptosis, potentially reduced NF-κB activity) in the Barrett’s tissues themselves, despite poor delivery of the curcumin to the oesophagus.


Barrett’s oesophagus Curcumin NF-κB 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cameron AJ, Lomboy CT (1992) Barrett’s oesophagus: age, prevalence, and extent of columnar epithelium. Gastroenterology 103:1241–1245PubMedGoogle Scholar
  2. 2.
    Spechler SJ, Zeroogian JM, Antonioli DA et al (1994) Prevalence of metaplasia at the gastrooesophageal junction. Lancet 344:1533–1536PubMedCrossRefGoogle Scholar
  3. 3.
    Ronkainen J, Aro P, Storskrubb T et al (2005) Prevalence of Barrett’s oesophagus in the general population: an endoscopic study. Gastroenterology 129:1825–1831PubMedCrossRefGoogle Scholar
  4. 4.
    Jankowski JA, Harrison RF, Perry I et al (2000) Barrett’s metaplasia. Lancet 356:2079–2085PubMedCrossRefGoogle Scholar
  5. 5.
    Wild CP, Hardie LJ (2003) Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer 3:676–684PubMedCrossRefGoogle Scholar
  6. 6.
    Abdel-Latif MM, O’Riordan J, Windle HJ et al (2004) NF-kappaB activation in esophageal adenocarcinoma: relationship to Barrett’s metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Ann Surg 239:491–500PubMedCrossRefGoogle Scholar
  7. 7.
    Jenkins GJ, Harries K, Doak SH et al (2004) The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis 25: 317–323PubMedCrossRefGoogle Scholar
  8. 8.
    Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947PubMedCrossRefGoogle Scholar
  9. 9.
    Arlt A, Gehrz A, Muerkoster S et al (2003) Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22:3243–3251PubMedCrossRefGoogle Scholar
  10. 10.
    Kunnumakkara AB, Guha S, Krishnan S et al (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 67: 3853–3861PubMedCrossRefGoogle Scholar
  11. 11.
    Attwood SE, Smyrk TC, DeMeester TR et al (1992) Duodenoesophageal reflux and the development of esophageal adenocarcinoma in rats. Surgery 111:503–510PubMedGoogle Scholar
  12. 12.
    Gillen P, Keeling P, Byrne PJ et al (1988) Implication of duodenogastric reflux in the pathogenesis of Barrett’s oesophagus. Br J Surg 75:540–543PubMedCrossRefGoogle Scholar
  13. 13.
    Tselepis C, Morris CD, Wakelin D et al (2003) Upregulation of the oncogene c-myc in Barrett’s adenocarcinoma: induction of c-myc by acidified bile acid in vitro. Gut 52:174–180PubMedCrossRefGoogle Scholar
  14. 14.
    Jenkins GJ, D’souza FR, Suzen SH et al (2007) Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: The potential role of anti-oxidants in Barrett’s oesophagus. Carcinogenesis 28:136–142PubMedCrossRefGoogle Scholar
  15. 15.
    Jenkins GJ, Cronin J, Alhamdani A et al (2008) The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS. Mutagenesis 23:399–405PubMedCrossRefGoogle Scholar
  16. 16.
    Odot J, Albert P, Carlier A et al (2004) In vitro and in vivo anti-tumoral effect of curcumin against melanoma cells. Int J Cancer 111:381–387PubMedCrossRefGoogle Scholar
  17. 17.
    Dhillon N, Aggarwal BB, Newman RA et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14: 4491–4499PubMedCrossRefGoogle Scholar
  18. 18.
    Subramanian M, Sreejayan, Rao MN et al (1994) Diminution of singlet oxygen-induced DNA damage by curcumin and related antioxidants. Mutat Res 311:249–255PubMedCrossRefGoogle Scholar
  19. 19.
    Huang MT, Lysz T, Ferraro T et al (1991) Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51:813–819PubMedGoogle Scholar
  20. 20.
    Gao X, Kuo J, Jiang H et al (2004) Immunomodulatory activity of curcumin: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production in vitro. Biochem Pharmacol 68:51–61PubMedCrossRefGoogle Scholar
  21. 21.
    Baatout S, Derradji H, Jacquet P et al (2004) Effect of curcuma on radiation-induced apoptosis in human cancer cells. Int J Oncol 24:321–329PubMedGoogle Scholar
  22. 22.
    Wang Z, Zhang Y, Banerjee S et al (2006) Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer 106: 2503–2513PubMedCrossRefGoogle Scholar
  23. 23.
    Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111PubMedCrossRefGoogle Scholar
  24. 24.
    Eigner D, Scholz D (1999) Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 67:1–6PubMedCrossRefGoogle Scholar
  25. 25.
    Kunnumakkara AB, Diagaradjane P, Guha S et al (2008) Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res 14:2128–2136PubMedCrossRefGoogle Scholar
  26. 26.
    Su CC, Chen GW, Lin JG et al (2006) Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B /p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res 26:1281–1288PubMedGoogle Scholar
  27. 27.
    Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398PubMedGoogle Scholar
  28. 28.
    Mohandas KM, Desai DC (1999) Epidemiology of digestive tract cancers in India. V. Large and small bowel. Indian J Gastroenterol 18:118–121PubMedGoogle Scholar
  29. 29.
    Amarapurkar AD, Vora IM, Dhawan PS (1998) Barrett’s oesophagus. Indian J Pathol Microbiol 41:431–435PubMedGoogle Scholar
  30. 30.
    Dhawan PS, Alvares JF, Vora IM et al (2001) Prevalence of short segments of specialized columnar epithelium in distal oesophagus: association with gastroesophageal reflux. Indian J Gastroenterol 20:144–147PubMedGoogle Scholar
  31. 31.
    Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95PubMedCrossRefGoogle Scholar
  32. 32.
    Nehra D, Howell P, Williams CP et al (1999) Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 44:598–602PubMedCrossRefGoogle Scholar
  33. 33.
    Jenkins GJ, Mikhail J, Alhamdani A et al (2007) Immunohistochemical study of nuclear factorkappaB activity and interleukin-8 abundance in oesophageal adenocarcinoma; a useful strategy for monitoring these biomarkers. J Clin Pathol 60:1232–1237PubMedCrossRefGoogle Scholar
  34. 34.
    Soni KB, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36:273–275PubMedGoogle Scholar
  35. 35.
    Cheng AL, Hsu CH, Lin JK et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900PubMedGoogle Scholar
  36. 36.
    Sharma RA, Euden SA, Platton SL et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854PubMedCrossRefGoogle Scholar
  37. 37.
    Lao CD, Ruffin MTt, Normolle D et al (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10PubMedCrossRefGoogle Scholar
  38. 38.
    Wetscher GJ, Hinder RA, Bagchi D et al (1995) Reflux esophagitis in humans is mediated by oxygen-derived free radicals. Am J Surg 170:552–556; discussion 6–7PubMedCrossRefGoogle Scholar
  39. 39.
    Liu L, Ergun G, Ertan A et al (2003) Detection of oxidative DNA damage in oesophageal biopsies of patients with reflux symptoms and normal pH monitoring. Aliment Pharmacol Ther 18:693–698PubMedCrossRefGoogle Scholar
  40. 40.
    Tzonou A, Lipworth L, Garidou A et al (1996) Diet and risk of esophageal cancer by histologic type in a low-risk population. Int J Cancer 68:300–304PubMedCrossRefGoogle Scholar
  41. 41.
    Terry P, Lagergren J, Ye W et al (2000) Antioxidants and cancers of the oesophagus and gastric cardia. Int J Cancer 87:750–754PubMedCrossRefGoogle Scholar
  42. 42.
    Sun SC, Ganchi PA, Ballard DW et al (1993) NFkappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway. Science 259:1912–1915PubMedCrossRefGoogle Scholar
  43. 43.
    Xu L, Fidler IJ (2000) Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res 12:97–106PubMedGoogle Scholar
  44. 44.
    Lazar-Molnar E, Hegyesi H, Toth S et al (2000) Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12:547–554PubMedCrossRefGoogle Scholar
  45. 45.
    Huang S, Robinson JB, Deguzman A et al (2000) Blockade of nuclear factor-kappaB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 60:5334–5339PubMedGoogle Scholar
  46. 46.
    Harada A, Sekido N, Akahoshi T et al (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56:559–564PubMedGoogle Scholar
  47. 47.
    Hidaka H, Ishiko T, Furuhashi T et al (2002) Curcumin inhibits interleukin 8 production and enhances interleukin 8 receptor expression on the cell surface: impact on human pancreatic carcinoma cell growth by autocrine regulation. Cancer 95:1206–1214PubMedCrossRefGoogle Scholar
  48. 48.
    O’Riordan JM, Abdel-latif MM, Ravi N et al (2005) Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the oesophagus. Am J Gastroenterol 100:1257–1264PubMedCrossRefGoogle Scholar
  49. 49.
    Konturek PC, Nikiforuk A, Kania J et al (2004) Activation of NFkappaB represents the central event in the neoplastic progression associated with Barrett’s oesophagus: a possible link to the inflammation and overexpression of COX-2, PPARgamma and growth factors. Dig Dis Sci 49:1075–1083PubMedCrossRefGoogle Scholar
  50. 50.
    Rafiee P, Nelson VM, Manley S et al (2009) Effect of curcumin on acidic pH-induced expression of IL-6 and IL-8 in human esophageal epithelial cells (HET-1A): role of PKC, MAPKs, and NFkappaB. Am J Physiol Gastrointest Liver Physiol 296:G388–398PubMedCrossRefGoogle Scholar
  51. 51.
    Freudlsperger C, Greten J, Schumacher U (2008) Curcumin induces apoptosis in human neuroblastoma cells via inhibition of NFkappaB. Anticancer Res 28:209–214PubMedGoogle Scholar
  52. 52.
    Collett GP, Campbell FC (2004) Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25:2183–2189PubMedCrossRefGoogle Scholar
  53. 53.
    Reuter S, Eifes S, Dicato M et al (2008) Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol 76:1340–1351PubMedCrossRefGoogle Scholar
  54. 54.
    van der Woude CJ, Jansen PL, Tiebosch AT et al (2002) Expression of apoptosis-related proteins in Barrett’s metaplasia-dysplasia-carcinoma sequence: a switch to a more resistant phenotype. Hum Pathol 33:686–692PubMedCrossRefGoogle Scholar
  55. 55.
    Iravani S, Zhang HQ, Yuan ZQ et al (2003) Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett’s neoplasia. Hum Pathol 34:975–982PubMedCrossRefGoogle Scholar
  56. 56.
    Hormi-Carver K, Zhang X, Zhang HY et al (2009) Unlike esophageal squamous cells, Barrett’s epithelial cells resist apoptosis by activating the nuclear factor-kappaB pathway. Cancer Res 69: 672–677PubMedCrossRefGoogle Scholar
  57. 57.
    Whittles CE, Biddlestone LR, Burton A et al (1999) Apoptotic and proliferative activity in the neoplastic progression of Barrett’s oesophagus: a comparative study. J Pathol 187:535–540PubMedCrossRefGoogle Scholar
  58. 58.
    O’sullivan-Coyne G, O’sullivan GC, O’Donovan TR et al (2009) Curcumin induces apoptosisindependent death in oesophageal cancer cells. Br J Cancer 101:1585–1595PubMedCrossRefGoogle Scholar
  59. 59.
    Hartojo W, Silvers AL, Thomas DG et al (2010) Curcumin promotes apoptosis, increases chemosensitivity, and inhibits nuclear factor kappaB in esophageal adenocarcinoma. Transl Oncol 3:99–108PubMedGoogle Scholar
  60. 60.
    Ford AC, Forman D, Reynolds PD et al (2005) Ethnicity, gender, and socioeconomic status as risk factors for esophagitis and Barrett’s oesophagus. Am J Epidemiol 162:454–460PubMedCrossRefGoogle Scholar
  61. 61.
    Bisht S, Feldmann G, Soni S et al (2007) Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. J Nanobiotechnol 5:3CrossRefGoogle Scholar

Copyright information

© Feseo 2012

Authors and Affiliations

  • Nihit Rawat
    • 1
  • Ali Alhamdani
    • 1
  • Elizabeth McAdam
    • 2
  • James Cronin
    • 2
  • Zak Eltahir
    • 2
  • Paul Lewis
    • 2
  • Paul Griffiths
    • 3
  • John N. Baxter
    • 1
  • Gareth J. S. Jenkins
    • 2
    Email author
  1. 1.Department of Surgery Morriston HospitalABM University NHS TrustMorriston, SwanseaUK
  2. 2.Institute of Life Science Swansea School of MedicineSwansea UniversitySingleton Park, SwanseaUK
  3. 3.Department of Histopathology Morriston HospitalABM University NHS TrustMorriston, SwanseaUK

Personalised recommendations