Clinical and Translational Oncology

, Volume 13, Issue 3, pp 162–178 | Cite as

Treatment recommendations for metastatic colorectal cancer

  • Enrique Aranda
  • Albert Abad
  • Alfredo Carrato
  • Andrés Cervantes
  • Jesús García-Foncillas
  • Pilar García Alfonso
  • Rocío García Carbonero
  • Auxiliadora Gómez España
  • Josep M. Tabernero
  • Eduardo Díaz-Rubio
Educational Series Advances in Clinical Management and Therapy of Cancer


Metastatic colorectal cancer (CRC) represents an important health problem in which several biological predictive and prognostic factors have been identified, including clinical features and molecular markers that might influence the response to treatment. Actually, certain prognostic factors are considered key elements, along with disease extent, for deciding the therapeutic approach. However, a distinction between resectable/potentially resectable and unresectable patients must be made in order to establish an adequate therapeutic strategy. Different drugs and chemotherapy regimens are currently available, and their administration depends on patient characteristics, disease-related factors and the treatment objective. Moreover, special situations such as peritoneal carcinomatosis and local treatment of CRC in the setting of metastatic disease should be considered when deciding the most appropriate treatment strategy. This article reviews all the previously mentioned issues involved in the management of metastatic CRC and suggests some general recommendations for its treatment.


Metastatic colorectal cancer Chemotherapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosetti C, Bertuccio P, Levi F et al (2008) Cancer mortality in the European Union, 1970–2003, with a joinpoint analysis. Ann Oncol 19:631–640PubMedCrossRefGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E et al (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66PubMedCrossRefGoogle Scholar
  3. 3.
    Ferlay J, Autier P, Boniol M et al (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592PubMedCrossRefGoogle Scholar
  4. 4.
    Verdecchia A, Francisci S, Brenner H et al (2007) Recent cancer survival in Europe: a 2000–02 period analysis of EUROCARE-4 data. Lancet Oncol 8:784–796PubMedCrossRefGoogle Scholar
  5. 5.
    Área de epidemiología ambiental y Cáncer, Centro Nacional de Epidemiología, Instituto de Salud Carlos III (2007) Mortalidad por cáncer y otras causasen España, año 2005. April 1 [cited 2008]
  6. 6.
    Khatri VP, Petrelli NJ, Belghiti J (2005) Extending the frontiers of surgical therapy for hepatic colorectal metastases: is there a limit? J Clin Oncol 23:8490–8499PubMedCrossRefGoogle Scholar
  7. 7.
    Van Cutsem E, Nordlinger B, Adam R et al (2006) Towards a pan-European consensus on the treatment of patients with colorectal liver metastases. Eur J Cancer 42:2212–2221PubMedCrossRefGoogle Scholar
  8. 8.
    Yoo PS, Lopez-Soler RI, Longo WE, Cha CH (2006) Liver resection for metastatic colorectal cancer in the age of neoadjuvant chemotherapy and bevacizumab. Clin Colorectal Cancer 6:202–207PubMedCrossRefGoogle Scholar
  9. 9.
    Alberts SR, Horvath WL, Sternfeld WC et al (2005) Oxaliplatin, fluorouracil, and leucovorin for patients with unresectable liver-only metastases from colorectal cancer: a North Central Cancer Treatment Group phase II study. J Clin Oncol 23:9243–9249PubMedCrossRefGoogle Scholar
  10. 10.
    Kemeny N (2006) Management of liver metastases from colorectal cancer. Oncology (Williston Park) 20:1161–1176, 1179Google Scholar
  11. 11.
    Muratore A, Zorzi D, Bouzari H et al (2007) Asymptomatic colorectal cancer with un-resectable liver metastases: immediate colorectal resection or up-front systemic chemotherapy? Ann Surg Oncol 14:766–770PubMedCrossRefGoogle Scholar
  12. 12.
    Bipat S, van Leeuwen MS, Comans EF et al (2005) Colorectal liver metastases: CT, MR imaging, and PET for diagnosis-meta-analysis. Radiology 237:123–131PubMedCrossRefGoogle Scholar
  13. 13.
    Rappeport ED, Loft A, Berthelsen AK et al (2007) Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: a prospective study with intraoperative confirmation. Acta Radiol 48:369–378PubMedCrossRefGoogle Scholar
  14. 14.
    Huebner RH, Park KC, Shepherd JE et al (2000) A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 41:1177–1189PubMedGoogle Scholar
  15. 15.
    Köhne CH, Cunningham D, Di CF et al (2002) Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: results of a multivariate analysis of 3825 patients. Ann Oncol 13:308–317PubMedCrossRefGoogle Scholar
  16. 16.
    De Roock W, Piessevaux H, De Schutter J et al (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19:508–515PubMedCrossRefGoogle Scholar
  17. 17.
    Di Fiore F, Blanchard F, Charbonnier F et al (2007) Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br J Cancer 96:1166–1169PubMedCrossRefGoogle Scholar
  18. 18.
    Lievre A, Bachet JB, Le CD et al (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66:3992–3995PubMedCrossRefGoogle Scholar
  19. 19.
    Lievre A, Bachet JB, Boige V et al (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379PubMedCrossRefGoogle Scholar
  20. 20.
    Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417PubMedCrossRefGoogle Scholar
  21. 21.
    Bokemeyer C, Bondarenko I, Makhson A et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27:663–671PubMedCrossRefGoogle Scholar
  22. 22.
    Douillard JY, Siena S, Cassidy J et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28:4697–4705PubMedCrossRefGoogle Scholar
  23. 23.
    Laurent-Puig P, Cayre A, Manceau G et al (2009) Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 27:5924–5930PubMedCrossRefGoogle Scholar
  24. 24.
    Tol J, Nagtegaal ID, Punt CJ (2009) BRAF mutation in metastatic colorectal cancer. N Engl J Med 361:98–99PubMedCrossRefGoogle Scholar
  25. 25.
    Loupakis F, Pollina L, Stasi I et al (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27:2622–2629PubMedCrossRefGoogle Scholar
  26. 26.
    Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M et al (2009) Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer. PLoS One 4:e7287PubMedCrossRefGoogle Scholar
  27. 27.
    Loupakis F, Ruzzo A, Cremolini C et al (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101:715–721PubMedCrossRefGoogle Scholar
  28. 28.
    Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634PubMedCrossRefGoogle Scholar
  29. 29.
    Cote JF, Kirzin S, Kramar A et al (2007) UGT1A1 polymorphism can predict hematologic toxicity in patients treated with irinotecan. Clin Cancer Res 13:3269–3275PubMedCrossRefGoogle Scholar
  30. 30.
    Hoskins JM, Goldberg RM, Qu P et al (2007) UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 99: 1290–1295PubMedCrossRefGoogle Scholar
  31. 31.
    Innocenti F, Undevia SD, Iyer L et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388PubMedCrossRefGoogle Scholar
  32. 32.
    Massacesi C, Terrazzino S, Marcucci F et al (2006) Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer 106:1007–1016PubMedCrossRefGoogle Scholar
  33. 33.
    Stewart CF, Panetta JC, O’shaughnessy MA et al (2007) UGT1A1 promoter genotype correlates with SN-38 pharmacokinetics, but not severe toxicity in patients receiving low-dose irinotecan. J Clin Oncol 25:2594–2600PubMedCrossRefGoogle Scholar
  34. 34.
    Toffoli G, Cecchin E, Corona G et al (2006) The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 24:3061–3068PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang X, Diasio RB (2007) Regulation of human dihydropyrimidine dehydrogenase: implications in the pharmacogenetics of 5-FU-based chemotherapy. Pharmacogenomics 8:257–265PubMedCrossRefGoogle Scholar
  36. 36.
    Yen JL, McLeod HL (2007) Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur J Cancer 43:1011–1016PubMedCrossRefGoogle Scholar
  37. 37.
    Zhu AX, Puchalski TA, Stanton VP Jr et al (2004) Dihydropyrimidine dehydrogenase and thymidylate synthase polymorphisms and their association with 5-fluorouracil/leucovorin chemotherapy in colorectal cancer. Clin Colorectal Cancer 3:225–234PubMedCrossRefGoogle Scholar
  38. 38.
    Cohen SJ, Alpaugh RK, Gross S et al (2006) Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clin Colorectal Cancer 6:125–132PubMedCrossRefGoogle Scholar
  39. 39.
    Sastre J, Maestro ML, Puente J et al (2008) Circulating tumor cells in colorectal cancer: correlation with clinical and pathological variables. Ann Oncol 19:935–938PubMedCrossRefGoogle Scholar
  40. 40.
    Meropol NJ, Cohen SJ, Iannotti N et al (2007) Circulating tumor cells (CTC) predict progression free (PFS) and overall survival (OS) in patients with metastatic colorectal cancer. J Clin Oncol 25:4010Google Scholar
  41. 41.
    Libra M, Navolanic PM, Talamini R et al (2004) Thymidylate synthetase mRNA levels are increased in liver metastases of colorectal cancer patients resistant to fluoropyrimidine-based chemotherapy. BMC Cancer 4:11PubMedCrossRefGoogle Scholar
  42. 42.
    Ricciardiello L, Ceccarelli C, Angiolini G et al (2005) High thymidylate synthase expression in colorectal cancer with microsatellite instability: implications for chemotherapeutic strategies. Clin Cancer Res 11:4234–4240PubMedCrossRefGoogle Scholar
  43. 43.
    DiPaolo A, Chu E (2004) The role of thymidylate synthase as a molecular biomarker. Clin Cancer Res 10:411–412PubMedCrossRefGoogle Scholar
  44. 44.
    Salgado J, Zabalegui N, Gil C et al (2007) Polymorphisms in the thymidylate synthase and dihydropyrimidine dehydrogenase genes predict response and toxicity to capecitabine-raltitrexed in colorectal cancer. Oncol Rep 17:325–328PubMedGoogle Scholar
  45. 45.
    Rahman L, Voeller D, Rahman M et al (2004) Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell 5:341–351PubMedCrossRefGoogle Scholar
  46. 46.
    Marcuello E, Altés A, del Rio E et al (2004) Single nucleotide polymorphism in the 5′ tandem repeat sequences of thymidylate synthase gene predicts for response to fluorouracil-based chemotherapy in advanced colorectal cancer patients. Int J Cancer 112:733–737PubMedCrossRefGoogle Scholar
  47. 47.
    Martinez-Balibrea E, Manzano JL, Martinez-Cardus A et al (2007) Combined analysis of genetic polymorphisms in thymidylate synthase, uridine diphosphate glucoronosyltransferase and X-ray cross complementing factor 1 genes as a prognostic factor in advanced colorectal cancer patients treated with 5-fluorouracil plus oxaliplatin or irinotecan. Oncol Rep 17:637–645PubMedGoogle Scholar
  48. 48.
    Lecomte T, Ferraz JM, Zinzindohoue F et al (2004) Thymidylate synthase gene polymorphism predicts toxicity in colorectal cancer patients receiving 5-fluorouracil-based chemotherapy. Clin Cancer Res 10:5880–5888PubMedCrossRefGoogle Scholar
  49. 49.
    Popat S, Matakidou A, Houlston RS (2004) Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol 22:529–536PubMedCrossRefGoogle Scholar
  50. 50.
    Stoehlmacher J, Park DJ, Zhang W et al (2004) A multivariate analysis of genomic polymorphisms: prediction of clinical outcome to 5-FU/oxaliplatin combination chemotherapy in refractory colorectal cancer. Br J Cancer 91:344–354PubMedGoogle Scholar
  51. 51.
    Stoehlmacher J, Ghaderi V, Iobal S et al (2001) A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer. Anticancer Res 21:3075–3079PubMedGoogle Scholar
  52. 52.
    Ince WL, Jubb AM, Holden SN et al (2005) Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J Natl Cancer Inst 97:981–989PubMedCrossRefGoogle Scholar
  53. 53.
    Calvani M, Trisciuoglio D, Bergamaschi C et al (2008) Differential involvement of vascular endothelial growth factor in the survival of hypoxic colon cancer cells. Cancer Res 68:285–291PubMedCrossRefGoogle Scholar
  54. 54.
    Damiano V, Caputo R, Garofalo S et al (2007) TLR9 agonist acts by different mechanisms synergizing with bevacizumab in sensitive and cetuximab-resistant colon cancer xenografts. Proc Natl Acad Sci U S A 104:12468–12473PubMedCrossRefGoogle Scholar
  55. 55.
    Logan-Collins JM, Lowy AM, Robinson-Smith TM et al (2008) VEGF expression predicts survival in patients with peritoneal surface metastases from mucinous adenocarcinoma of the appendix and colon. Ann Surg Oncol 15:738–744PubMedCrossRefGoogle Scholar
  56. 56.
    Varey AH, Rennel ES, Qiu Y et al (2008) VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer 98:1366–1379PubMedCrossRefGoogle Scholar
  57. 57.
    Chun YS, Vauthey JN, Boonsirikamchai P et al (2009) Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 302:2338–2344PubMedCrossRefGoogle Scholar
  58. 58.
    Kopetz S, Hoff PM, Morris JS et al (2010) Phase II trial of infusional fluorouracil, irinotecan, and bevacizumab for metastatic colorectal cancer: efficacy and circulating angiogenic biomarkers associated with therapeutic resistance. J Clin Oncol 28:453–459PubMedCrossRefGoogle Scholar
  59. 59.
    Gayowski TJ, Iwatsuki S, Madariaga JR et al (1994) Experience in hepatic resection for metastatic colorectal cancer: analysis of clinical and pathologic risk factors. Surgery 116:703–710PubMedGoogle Scholar
  60. 60.
    Nordlinger B, Guiguet M, Vaillant JC et al (1996) Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Francaise de Chirurgie. Cancer 77:1254–1262PubMedCrossRefGoogle Scholar
  61. 61.
    Fong Y, Fortner J, Sun RL et al (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230:309–318PubMedCrossRefGoogle Scholar
  62. 62.
    Iwatsuki S, Dvorchik I, Madariaga JR et al (1999) Hepatic resection for metastatic colorectal adenocarcinoma: a proposal of a prognostic scoring system. J Am Coll Surg 189:291–299PubMedCrossRefGoogle Scholar
  63. 63.
    Figueras J, Valls C, Rafecas A et al (2001) Resection rate and effect of postoperative chemotherapy on survival after surgery for colorectal liver metastases. Br J Surg 88:980–985PubMedCrossRefGoogle Scholar
  64. 64.
    Tomlinson JS, Jarnagin WR, DeMatteo RP et al (2007) Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol 25:4575–4580PubMedCrossRefGoogle Scholar
  65. 65.
    Cummings LC, Payes JD, Cooper GS (2007) Survival after hepatic resection in metastatic colorectal cancer: a population-based study. Cancer 109:718–726PubMedCrossRefGoogle Scholar
  66. 66.
    National Comprehensive Cancer Network (NCCN) (2007) NCCN practice guidelines in oncology. V.2.
  67. 67.
    Portier G, Elias D, Bouche O et al (2006) Multicenter randomized trial of adjuvant fluorouracil and folinic acid compared with surgery alone after resection of colorectal liver metastases: FFCD ACHBTH AURC 9002 trial. J Clin Oncol 24:4976–4982PubMedCrossRefGoogle Scholar
  68. 68.
    Nordlinger B, Sorbye H, Glimelius B et al (2008) Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 371:1007–1016PubMedCrossRefGoogle Scholar
  69. 69.
    Adam R, Avisar E, Ariche A et al (2001) Fiveyear survival following hepatic resection after neoadjuvant therapy for nonresectable colorectal. Ann Surg Oncol 8:347–353PubMedCrossRefGoogle Scholar
  70. 70.
    Bismuth H, Adam R, Levi F et al (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224:509–520PubMedCrossRefGoogle Scholar
  71. 71.
    Giacchetti S, Itzhaki M, Gruia G et al (1999) Long-term survival of patients with unresectable colorectal cancer liver metastases following infusional chemotherapy with 5-fluorouracil, leucovorin, oxaliplatin and surgery. Ann Oncol 10:663–669PubMedCrossRefGoogle Scholar
  72. 72.
    Adam R, Pascal G, Castaing D et al (2004) Tumor progression while on chemotherapy: a contraindication to liver resection for multiple colorectal metastases? Ann Surg 240:1052–1061PubMedCrossRefGoogle Scholar
  73. 73.
    Tabernero J, Van Cutsem E, Díaz-Rubio E et al (2007) Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 25:5225–5232PubMedCrossRefGoogle Scholar
  74. 74.
    Min BS, Kim NK, Ahn JB et al (2007) Cetuximab in combination with 5-fluorouracil, leucovorin and irinotecan as a neoadjuvant chemotherapy in patients with initially unresectable colorectal liver metastases. Onkologie 30:637–643PubMedCrossRefGoogle Scholar
  75. 75.
    Ellis LM, Curley SA, Grothey A (2005) Surgical resection after downsizing of colorectal liver metastasis in the era of bevacizumab. J Clin Oncol 23:4853–4855PubMedCrossRefGoogle Scholar
  76. 76.
    Gruenberger B, Tamandl D, Schueller J et al (2008) Bevacizumab, capecitabine, and oxaliplatin as neoadjuvant therapy for patients with potentially curable metastatic colorectal cancer. J Clin Oncol 26:1830–1835PubMedCrossRefGoogle Scholar
  77. 77.
    Ribero D, Wang H, Donadon M et al (2007) Bevacizumab improves pathologic response and protects against hepatic injury in patients treated with oxaliplatin-based chemotherapy for colorectal liver metastases. Cancer 110:2761–2767PubMedCrossRefGoogle Scholar
  78. 78.
    Reddy SK, Morse MA, Hurwitz HI et al (2008) Addition of bevacizumab to irinotecan- and oxaliplatin-based preoperative chemotherapy regimens does not increase morbidity after resection of colorectal liver metastases. J Am Coll Surg 206: 96–106PubMedCrossRefGoogle Scholar
  79. 79.
    Abad A, Massuti B, Anton A et al (2008) Colorectal cancer metastasis resectability after treatment with the combination of oxaliplatin, irinotecan and 5-fluorouracil. Final results of a phase II study. Acta Oncol 47:286–292PubMedCrossRefGoogle Scholar
  80. 80.
    Falcone A, Ricci S, Brunetti I et al (2007) Phase III trial of infusional fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFOXIRI) compared with infusional fluorouracil, leucovorin, and irinotecan (FOLFIRI) as first-line treatment for metastatic colorectal cancer: the Gruppo Oncologico Nord Ovest. J Clin Oncol 25:1670–1676PubMedCrossRefGoogle Scholar
  81. 81.
    Folprecht G, Gruenberger T, Bechstein WO et al (2010) Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol 11:38–47PubMedCrossRefGoogle Scholar
  82. 82.
    Folprecht G, Grothey A, Alberts S et al (2005) Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. Ann Oncol 16:1311–1319PubMedCrossRefGoogle Scholar
  83. 83.
    Vauthey JN, Pawlik TM, Ribero D et al (2006) Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 24: 2065–2072PubMedCrossRefGoogle Scholar
  84. 84.
    Benoist S, Brouquet A, Penna C et al (2006) Complete response of colorectal liver metastases after chemotherapy: does it mean cure? J Clin Oncol 24:3939–3945PubMedCrossRefGoogle Scholar
  85. 85.
    Abdalla EK, Vauthey JN, Ellis LM et al (2004) Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 239:818–825PubMedCrossRefGoogle Scholar
  86. 86.
    Goldberg RM, Köhne CH, Seymour MT et al (2007) A pooled safety and efficacy analysis examining the effect on performance status (PS) on outcomes in nine first-line treatment (rx) trials (cts) of 6,286 patients (pts) with metastatic colorectal cancer (MCRC). J Clin Oncol 25:4011CrossRefGoogle Scholar
  87. 87.
    Grothey A, Sargent D, Goldberg RM, Schmoll HJ (2004) Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 22:1209–1214PubMedCrossRefGoogle Scholar
  88. 88.
    Seymour MT, Maughan TS, Ledermann JA et al (2007) Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet 370:143–152PubMedCrossRefGoogle Scholar
  89. 89.
    Koopman M, Antonini NF, Douma J et al (2007) Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 370:135–142PubMedCrossRefGoogle Scholar
  90. 90.
    Tournigand C, Andre T, Achille E et al (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22:229–237PubMedCrossRefGoogle Scholar
  91. 91.
    Maughan T, Adams RA, Smith CG et al (2009) 6LBA Addition of cetuximab to oxaliplatin-based combination chemotherapy (CT) in patients with KRAS wild-type advanced colorectal cancer (ACRC): a randomised superiority trial (MRC COIN). Eur J Cancer 7:4–5Google Scholar
  92. 92.
    Seymour MT, Maughan TS, Wasan HS et al (2007) Capecitabine (Cap) and oxaliplatin (Ox) in elderly and/or frail patients with metastatic colorectal cancer: the FOCUS2 trial. J Clin Oncol 25:9030CrossRefGoogle Scholar
  93. 93.
    Goldberg RM, Rothenberg ML, Van Cutsem E et al (2007) The continuum of care: a paradigm for the management of metastatic colorectal cancer. Oncologist 12:38–50PubMedCrossRefGoogle Scholar
  94. 94.
    Abad A, Carrato A, Navarro M et al (2005) Two consecutive phase II trials of biweekly oxaliplatin plus weekly 48-hour continuous infusion of nonmodulated high-dose 5-fluorouracil as first-line treatment for advanced colorectal cancer. Clin Colorectal Cancer 4:384–389PubMedCrossRefGoogle Scholar
  95. 95.
    Aranda E, Diaz-Rubio E, Cervantes A et al (1998) Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with weekly high-dose 48-hour continuous-infusion fluorouracil for advanced colorectal cancer: a Spanish Cooperative Group for Gastrointestinal Tumor Therapy (TTD) study. Ann Oncol 9:727–731PubMedCrossRefGoogle Scholar
  96. 96.
    Colucci G, Gebbia V, Paoletti G et al (2005) Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell’Italia Meridionale. J Clin Oncol 23:4866–4875PubMedCrossRefGoogle Scholar
  97. 97.
    de Gramont A, Figer A, Seymour M et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18:2938–2947PubMedGoogle Scholar
  98. 98.
    Goldberg RM, Sargent DJ, Morton RF et al (2004) A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 22:23–30PubMedCrossRefGoogle Scholar
  99. 99.
    Maindrault-Goebel F, Louvet C, Andre T et al (1999) Oxaliplatin added to the simplified bimonthly leucovorin and 5-fluorouracil regimen as second-line therapy for metastatic colorectal cancer (FOLFOX6). GERCOR. Eur J Cancer 35:1338–1342CrossRefGoogle Scholar
  100. 100.
    Andre T, Louvet C, Maindrault-Goebel F et al (1999) CPT-11 (irinotecan) addition to bimonthly, high-dose leucovorin and bolus and continuous-infusion 5-fluorouracil (FOLFIRI) for pretreated metastatic colorectal cancer. GERCOR. Eur J Cancer 35:1343–1347CrossRefGoogle Scholar
  101. 101.
    Douillard JY, Cunningham D, Roth AD et al (2000) Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355:1041–1047PubMedCrossRefGoogle Scholar
  102. 102.
    Cassidy J, Clarke S, Diaz-Rubio E et al (2008) Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol 26:2006–2012PubMedCrossRefGoogle Scholar
  103. 103.
    Diaz-Rubio E, Tabernero J, Gomez-Espana A et al (2007) Phase III study of capecitabine plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 25:4224–4230PubMedCrossRefGoogle Scholar
  104. 104.
    Porschen R, Arkenau HT, Kubicka S et al (2007) Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. J Clin Oncol 25:4217–4223PubMedCrossRefGoogle Scholar
  105. 105.
    Cunningham D, Pyrhonen S, James RD et al (1998) Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352:1413–1418PubMedCrossRefGoogle Scholar
  106. 106.
    Rougier P, Van Cutsem E, Bajetta E et al (1998) Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet 352:1407–1412PubMedCrossRefGoogle Scholar
  107. 107.
    de Gramont A, Bosset JF, Milan C et al (1997) Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French intergroup study. J Clin Oncol 15:808–815PubMedGoogle Scholar
  108. 108.
    Jager E, Heike M, Bernhard H et al (1996) Weekly high-dose leucovorin versus low-dose leucovorin combined with fluorouracil in advanced colorectal cancer: results of a randomized multicenter trial. Study Group for Palliative Treatment of Metastatic Colorectal Cancer Study Protocol 1. J Clin Oncol 14:2274–2279PubMedGoogle Scholar
  109. 109.
    Van Cutsem E, Twelves C, Cassidy J et al (2001) Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 19:4097–4106PubMedGoogle Scholar
  110. 110.
    Van Cutsem E, Hoff PM, Harper P et al (2004) Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br J Cancer 90:1190–1197PubMedCrossRefGoogle Scholar
  111. 111.
    Tournigand C, Cervantes A, Figer A et al (2006) OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-Go fashion in advanced colorectal cancer-a GERCOR study. J Clin Oncol 24:394–400PubMedCrossRefGoogle Scholar
  112. 112.
    Chibaudel B, Maindrault-Goebel F, Lledo G et al (2009) Can chemotherapy be discontinued in unresectable metastatic colorectal cancer? The GERCOR OPTIMOX2 Study. J Clin Oncol 27:5727–5733PubMedCrossRefGoogle Scholar
  113. 113.
    Fuchs CS, Marshall J, Mitchell E et al (2007) Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 25:4779–4786PubMedCrossRefGoogle Scholar
  114. 114.
    Hochster HS, Hart LL, Ramanathan RK et al (2008) Safety and efficacy of oxaliplatin and fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer: results of the TREE Study. J Clin Oncol 26:3523–3529PubMedCrossRefGoogle Scholar
  115. 115.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRefGoogle Scholar
  116. 116.
    Kabbinavar FF, Schulz J, McCleod M et al (2005) Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 23:3697–3705PubMedCrossRefGoogle Scholar
  117. 117.
    Kabbinavar FF, Hambleton J, Mass RD et al (2005) Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 23:3706–3712PubMedCrossRefGoogle Scholar
  118. 118.
    Sobrero A, Ackland S, Carrion RP et al (2006) Efficacy and safety of bevacizumab in combination with irinotecan and infusional 5-FU as first-line treatment for patients with metastatic colorectal cancer. J Clin Oncol 24:3544Google Scholar
  119. 119.
    Giantonio BJ, Catalano PJ, Meropol NJ et al (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25:1539–1544PubMedCrossRefGoogle Scholar
  120. 120.
    Kozloff M, Yood MU, Berlin J et al (2009) Clinical outcomes associated with bevacizumab-containing treatment of metastatic colorectal cancer: the BRiTE observational cohort study. Oncologist 14:862–870PubMedCrossRefGoogle Scholar
  121. 121.
    Sugrue M, Kozloff M, Hainsworth J et al (2006) Risk factors for gastrointestinal perforations in patients with metastatic colorectal cancer receiving bevacizumab plus chemotherapy. J Clin Oncol 24:3535CrossRefGoogle Scholar
  122. 122.
    Scappaticci FA, Skillings JR, Holden SN et al (2007) Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 99:1232–1239PubMedCrossRefGoogle Scholar
  123. 123.
    Cassidy J, Cunningham D, Berry SR et al (2008) Survey with curative intent in patients (pts) treated with first-line chemotherapy (CT)+bevacizumab(BEV) for metastatic colorectal cancer (mCRC): First BEAT and NO16966. J Clin Oncol 26:4022CrossRefGoogle Scholar
  124. 124.
    Scappaticci FA, Fehrenbacher L, Cartwright T et al (2005) Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91:173–180PubMedCrossRefGoogle Scholar
  125. 125.
    Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedCrossRefGoogle Scholar
  126. 126.
    Saltz LB, Meropol NJ, Loehrer PJ Sr et al (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208PubMedCrossRefGoogle Scholar
  127. 127.
    Saltz LB, Lenz HJ, Kindler HL et al (2007) Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol 25:4557–4561PubMedCrossRefGoogle Scholar
  128. 128.
    Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765PubMedCrossRefGoogle Scholar
  129. 129.
    Sobrero AF, Maurel J, Fehrenbacher L et al (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319PubMedCrossRefGoogle Scholar
  130. 130.
    Bokemeyer C, Bondarenko I, Hartmann JT et al (2010) Biomarkers predictive for outcome in patients with metastatic colorectal cancer (mCRC) treated with first-line FOLFOX4 plus or minus cetuximab: updated data from the OPUS study. Proceedings of American Society of Clinical Oncology (ASCO) Gastrointestinal Cancer Symposium, January 22, Orlando, USA. American Society of Clinical Oncology (ASCO)Google Scholar
  131. 131.
    Van Cutsem E, Lang I, Folprecht G et al (2010) Cetuximab plus FOLFIRI in the treatment of metastatic colorectal cancer (mCRC): the influence of KRAS AND BRAF biomarkers on outcome: updated data from the CRYSTAL trial. Proceedings of American Society of Clinical Oncology (ASCO) Gastrointestinal Cancer Symposium, January 22, Orlando, USA. American Society of Clinical Oncology (ASCO)Google Scholar
  132. 132.
    Kohne C, Rougier P, Stroh C et al (2010) Cetuximab with chemotherapy (CT) as first-line treatment for metastatic colorectal cancer (mCRC): a meta-analysis of the CRYSTAL and OPUS studies according to KRAS and BRAF mutation status. Proceedings of American Society of Clinical Oncology (ASCO) Gastrointestinal Cancer Symposium, January 22, Orlando, USA. American Society of Clinical Oncology (ASCO)Google Scholar
  133. 133.
    Van Cutsem E, Peeters M, Siena S et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapyrefractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664PubMedCrossRefGoogle Scholar
  134. 134.
    Peeters M, Price TJ, Cervantes A et al (2010) Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as secondline treatment in patients with metastatic colorectal cancer. J Clin Oncol 28:4706–4713PubMedCrossRefGoogle Scholar
  135. 135.
    Hecht JR, Mitchell E, Chidiac T et al (2009) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27:672–680PubMedCrossRefGoogle Scholar
  136. 136.
    Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572PubMedCrossRefGoogle Scholar
  137. 137.
    Sugarbaker PH (1996) Observations concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. Cancer Treat Res 82:79–100PubMedGoogle Scholar
  138. 138.
    Koppe MJ, Boerman OC, Oyen WJ, Bleichrodt RP (2006) Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Ann Surg 243:212–222PubMedCrossRefGoogle Scholar
  139. 139.
    Guller U, Zajac P, Schnider A et al (2002) Disseminated single tumor cells as detected by realtime quantitative polymerase chain reaction represent a prognostic factor in patients undergoing surgery for colorectal cancer. Ann Surg 236:768–775PubMedCrossRefGoogle Scholar
  140. 140.
    Wind P, Norklinger B, Roger V et al (1999) Long-term prognostic value of positive peritoneal washing in colon cancer. Scand J Gastroenterol 34:606–610PubMedCrossRefGoogle Scholar
  141. 141.
    Archer AG, Sugarbaker PH, Jelinek JS (1996) Radiology of peritoneal carcinomatosis. Cancer Treat Res 82:263–288PubMedGoogle Scholar
  142. 142.
    Fong Y, Saldinger PF, Akhurst T et al (1999) Utility of 18F-FDG positron emission tomography scanning on selection of patients for resection of hepatic colorectal metastases. Am J Surg 178(4):282–7PubMedCrossRefGoogle Scholar
  143. 143.
    Chu DZ, Lang NP, Thompson C et al (1989) Peritoneal carcinomatosis in nongynecologic malignancy. A prospective study of prognostic factors. Cancer 63:364–367PubMedCrossRefGoogle Scholar
  144. 144.
    Jayne DG, Fook S, Loi C, Seow-Choen F (2002) Peritoneal carcinomatosis from colorectal cancer. Br J Surg 89:1545–1550PubMedCrossRefGoogle Scholar
  145. 145.
    Sadeghi B, Arvieux C, Glehen O et al (2000) Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer 88:358–363PubMedCrossRefGoogle Scholar
  146. 146.
    Verwaal VJ, van Ruth S, de Bree E et al (2003) Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol 21:3737–3743PubMedCrossRefGoogle Scholar
  147. 147.
    Carmignani CP, Ortega-Perez G, Sugarbaker PH (2004) The management of synchronous peritoneal carcinomatosis and hematogenous metastasis from colorectal cancer. Eur J Surg Oncol 30:391–398PubMedCrossRefGoogle Scholar
  148. 148.
    Culliford AT, Brooks AD, Sharma S et al (2001) Surgical debulking and intraperitoneal chemotherapy for established peritoneal metastases from colon and appendix cancer. Ann Surg Oncol 8:787–795PubMedCrossRefGoogle Scholar
  149. 149.
    Elias D, Pocard M, Sideris L et al (2004) Preliminary results of intraperitoneal chemohyperthermia with oxaliplatin in peritoneal carcinomatosis of colorectal origin. Br J Surg 91:455–456PubMedCrossRefGoogle Scholar
  150. 150.
    Elias D, Delperro JR, Sideris L et al (2004) Treatment of peritoneal carcinomatosis from colorectal cancer: impact of complete cytoreductive surgery and difficulties in conducting randomized trials. Ann Surg Oncol 11:518–521PubMedCrossRefGoogle Scholar
  151. 151.
    Glehen O, Cotte E, Schreiber V et al (2004) Intraperitoneal chemohyperthermia and attempted cytoreductive surgery in patients with peritoneal carcinomatosis of colorectal origin. Br J Surg 91:747–754PubMedCrossRefGoogle Scholar
  152. 152.
    Glehen O, Kwiatkowski F, Sugarbaker PH et al (2004) Cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: a multi-institutional study. J Clin Oncol 22:3284–3292PubMedCrossRefGoogle Scholar
  153. 153.
    Jacquet P, Stephens AD, Averbach AM et al (1996) Analysis of morbidity and mortality in 60 patients with peritoneal carcinomatosis treated by cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy. Cancer 77:2622–2629PubMedCrossRefGoogle Scholar
  154. 154.
    Kecmanovic DM, Pavlov MJ, Ceranic MS et al (2005) Treatment of peritoneal carcinomatosis from colorectal cancer by cytoreductive surgery and hyperthermic perioperative intraperitoneal chemotherapy. Eur J Surg Oncol 31:147–152PubMedCrossRefGoogle Scholar
  155. 155.
    Mahteme H, Hansson J, Berglund A et al (2004) Improved survival in patients with peritoneal metastases from colorectal cancer: a preliminary study. Br J Cancer 90:403–407PubMedCrossRefGoogle Scholar
  156. 156.
    Pilati P, Mocellin S, Rossi CR et al (2003) Cytoreductive surgery combined with hyperthermic intraperitoneal intraoperative chemotherapy for peritoneal carcinomatosis arising from colon adenocarcinoma. Ann Surg Oncol 10:508–513PubMedCrossRefGoogle Scholar
  157. 157.
    Schneebaum S, Arnold MW, Staubus A et al (1996) Intraperitoneal hyperthermic perfusion with mitomycin C for colorectal cancer with peritoneal metastases. Ann Surg Oncol 3:44–50PubMedCrossRefGoogle Scholar
  158. 158.
    Shen P, Hawksworth J, Lovato J et al (2004) Cytoreductive surgery and intraperitoneal hyperthermic chemotherapy with mitomycin C for peritoneal carcinomatosis from nonappendiceal colorectal carcinoma. Ann Surg Oncol 11:178–186PubMedCrossRefGoogle Scholar
  159. 159.
    Sugarbaker PH, Jablonski KA (1995) Prognostic features of 51 colorectal and 130 appendiceal cancer patients with peritoneal carcinomatosis treated by cytoreductive surgery and intraperitoneal chemotherapy. Ann Surg 221:124–132PubMedCrossRefGoogle Scholar
  160. 160.
    Sugarbaker PH, Schellinx ME, Chang D et al (1996) Peritoneal carcinomatosis from adenocarcinoma of the colon. World J Surg 20:585–591PubMedCrossRefGoogle Scholar
  161. 161.
    Verwaal VJ, van Tinteren H, van Ruth S, Zoetmulder FA (2004) Predicting the survival of patients with peritoneal carcinomatosis of colorectal origin treated by aggressive cytoreduction and hyperthermic intraperitoneal chemotherapy. Br J Surg 91:739–746PubMedCrossRefGoogle Scholar
  162. 162.
    Verwaal VJ, Boot H, Aleman BM et al (2004) Recurrences after peritoneal carcinomatosis of colorectal origin treated by cytoreduction and hyperthermic intraperitoneal chemotherapy: location, treatment, and outcome. Ann Surg Oncol 11:375–379PubMedCrossRefGoogle Scholar
  163. 163.
    Verwaal VJ, Zoetmulder FA (2004) Follow-up of patients treated by cytoreduction and chemotherapy for peritoneal carcinomatosis of colorectal origin. Eur J Surg Oncol 30:280–285PubMedCrossRefGoogle Scholar
  164. 164.
    Verwaal VJ, van Tinteren H, Ruth SV, Zoetmulder FA (2004) Toxicity of cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy. J Surg Oncol 85:61–67PubMedCrossRefGoogle Scholar
  165. 165.
    Witkamp AJ, de Bree E, Kaag MM et al (2001) Extensive cytoreductive surgery followed by intraoperative hyperthermic intraperitoneal chemotherapy with mitomycin-C in patients with peritoneal carcinomatosis of colorectal origin. Eur J Cancer 37:979–984PubMedCrossRefGoogle Scholar
  166. 166.
    Jacquet P, Sugarbaker PH (1996) Clinical research methodologies in diagnosis and staging of patients with carcinomatosis. In: Sugarbaker PH (ed.) Peritoneal carcinomatosis: principles of management. Kluwer Academic, Boston, pp 359–374Google Scholar
  167. 167.
    Elias D, Lefevre JH, Chevalier J et al (2009) Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol 27:681–685PubMedCrossRefGoogle Scholar
  168. 168.
    van Leeuwen BL, Graf W, Pahlman L, Mahteme H (2008) Swedish experience with peritonectomy and HIPEC. HIPEC in peritoneal carcinomatosis. Ann Surg Oncol 15:745–753Google Scholar
  169. 169.
    Yan TD, Bijelic L, Sugarbaker PH (2007) Critical analysis of treatment failure after complete cytoreductive surgery and perioperative intraperitoneal chemotherapy for peritoneal dissemination from appendiceal mucinous neoplasms. Ann Surg Oncol 14:2289–2299PubMedCrossRefGoogle Scholar
  170. 170.
    Elias D, Gilly F, Boutitie F et al (2010) Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol 28:63–68PubMedCrossRefGoogle Scholar
  171. 171.
    Bijelic L, Yan TD, Sugarbaker PH (2007) Failure analysis of recurrent disease following complete cytoreduction and perioperative intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Ann Surg Oncol 14:2281–2288PubMedCrossRefGoogle Scholar
  172. 172.
    Esquivel J, Sticca R, Sugarbaker P et al (2007) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. Society of Surgical Oncology. Ann Surg Oncol 14:128–133PubMedGoogle Scholar
  173. 173.
    Yan TD, Black D, Savady R, Sugarbaker PH (2006) Systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal carcinoma. J Clin Oncol 24:4011–4019PubMedCrossRefGoogle Scholar
  174. 174.
    Kianmanesh R, Scaringi S, Sabate JM et al (2007) Iterative cytoreductive surgery associated with hyperthermic intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis of colorectal origin with or without liver metastases. Ann Surg 245:597–603PubMedCrossRefGoogle Scholar
  175. 175.
    Temple LK, Hsieh L, Wong WD et al (2004) Use of surgery among elderly patients with stage IV colorectal cancer. J Clin Oncol 22:3475–3484PubMedCrossRefGoogle Scholar
  176. 176.
    Poultsides GA, Servais EL, Saltz LB et al (2009) Outcome of primary tumor in patients with synchronous stage IV colorectal cancer receiving combination chemotherapy without surgery as initial treatment. J Clin Oncol 27:3379–3384PubMedCrossRefGoogle Scholar
  177. 177.
    Baron TH, Dean PA, Yates MR III et al (1998) Expandable metal stents for the treatment of colonic obstruction: techniques and outcomes. Gastrointest Endosc 47:277–286PubMedCrossRefGoogle Scholar
  178. 178.
    Camunez F, Echenagusia A, Simo G et al (2000) Malignant colorectal obstruction treated by means of self-expanding metallic stents: effectiveness before surgery and in palliation. Radiology 216:492–497PubMedGoogle Scholar
  179. 179.
    Repici A, Reggio D, De Angelis C et al (2000) Covered metal stents for management of inoperable malignant colorectal strictures. Gastrointest Endosc 52:735–740PubMedCrossRefGoogle Scholar
  180. 180.
    de Santibanes E, Lassalle FB, McCormack L et al (2002) Simultaneous colorectal and hepatic resections for colorectal cancer: postoperative and longterm outcomes. J Am Coll Surg 195:196–202PubMedCrossRefGoogle Scholar
  181. 181.
    Lyass S, Zamir G, Matot I et al (2001) Combined colon and hepatic resection for synchronous colorectal liver metastases. J Surg Oncol 78:17–21PubMedCrossRefGoogle Scholar
  182. 182.
    Weber JC, Bachellier P, Oussoultzoglou E, Jaeck D (2003) Simultaneous resection of colorectal primary tumour and synchronous liver metastases. Br J Surg 90:956–962PubMedCrossRefGoogle Scholar
  183. 183.
    Tanaka K, Shimada H, Matsuo K et al (2004) Outcome after simultaneous colorectal and hepatic resection for colorectal cancer with synchronous metastases. Surgery 136:650–659PubMedCrossRefGoogle Scholar
  184. 184.
    Nordlinger B, Quilichini MA, Parc R et al (1987) Hepatic resection for colorectal liver metastases. Influence on survival of preoperative factors and surgery for recurrences in 80 patients. Ann Surg 205:256–263PubMedCrossRefGoogle Scholar
  185. 185.
    Elias D, Detroz B, Lasser P et al (1995) Is simultaneous hepatectomy and intestinal anastomosis safe? Am J Surg 169:254–260PubMedCrossRefGoogle Scholar
  186. 186.
    Lambert LA, Colacchio TA, Barth RJ (2000) Interval hepatic resection of colorectal metastases improves patient selection. Curr Surg 57:504PubMedCrossRefGoogle Scholar
  187. 187.
    Capussotti L, Ferrero A, Vigano L et al (2007) Major liver resections synchronous with colorectal surgery. Ann Surg Oncol 14:195–201PubMedCrossRefGoogle Scholar
  188. 188.
    Martin R, Paty P, Fong Y et al (2003) Simultaneous liver and colorectal resections are safe for synchronous colorectal liver metastasis. J Am Coll Surg 197:233–241PubMedCrossRefGoogle Scholar
  189. 189.
    Adam R, Delvart V, Pascal G et al (2004) Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 240:644–657PubMedCrossRefGoogle Scholar
  190. 190.
    Mentha G, Majno PE, Andres A et al (2006) Neoadjuvant chemotherapy and resection of advanced synchronous liver metastases before treatment of the colorectal primary. Br J Surg 93:872–878PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2011

Authors and Affiliations

  • Enrique Aranda
    • 1
  • Albert Abad
    • 2
  • Alfredo Carrato
    • 3
  • Andrés Cervantes
    • 4
  • Jesús García-Foncillas
    • 5
  • Pilar García Alfonso
    • 6
  • Rocío García Carbonero
    • 7
  • Auxiliadora Gómez España
    • 1
  • Josep M. Tabernero
    • 8
  • Eduardo Díaz-Rubio
    • 9
  1. 1.Medical Oncology DepartmentHospital Universitario Reina SofíaCórdobaSpain
  2. 2.Hospital Germans Trias i Pujol-ICOBadalona, BarcelonaSpain
  3. 3.Hospital Ramón y CajalMadridSpain
  4. 4.Hospital ClínicoValenciaSpain
  5. 5.Clínica de NavarraPamplona, NavarraSpain
  6. 6.Hospital Gregorio MarañónMadridSpain
  7. 7.Instituto de Biomedicina de Sevilla (IBIS)Hospital Universitario Virgen del RocíoSevillaSpain
  8. 8.Hospital Vall d’HebronBarcelonaSpain
  9. 9.Hospital Clínico San CarlosMadridSpain

Personalised recommendations