Clinical and Translational Oncology

, Volume 12, Issue 8, pp 521–525 | Cite as

Circulating endothelial and endothelial progenitor cells in non-small-cell lung cancer

  • Tania Fleitas
  • Vicenta Martínez-Sales
  • José Gómez-Codina
  • María Martín
  • Gaspar Reynés
Educational Series/Blue Series Molecular and Cellular Biology of Cancer


New treatments have recently been introduced for treating non-small-cell lung cancer. Chemotherapeutic agents, such as pemetrexed, and targeted therapies, such as bevacizumab, erlotinib or gefitinib, have extended treatment options for selected histological subgroups. Antiangiogenic treatments, either associated with conventional chemotherapeutic drugs or given alone as maintenance therapy, constitute an active clinical research field. However, not all lung cancer patients benefit from antiangiogenic compounds. Moreover, tumour response assessment is often difficult when using these drugs, since targeted therapies generally do not cause rapid and measurable tumour shrinkage but, rather, long stabilisations and slight density changes on imaging tests. The finding of clinical or biological factors that might identify patients who will better benefit from these treatments, as well as identifying surrogate markers of tumour response and prognosis, is an issue of great interest. In that sense, different research lines have investigated the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR) pathways. Circulating endothelial (CECs) and endothelial progenitor cells (CEPCs) are of prognostic value in different types of cancers, and relevant data are published about their potential usefulness as predictors of response to chemotherapy and antiangiogenic treatments. In this review, we discuss the data available on the role of CECs and CEPCs as prognostic factors and as surrogate markers of treatment response in non-small-cell lung cancer.


Non-small-cell lung cancer Circulating endothelial cells Endothelial progenitor cells Angiogenesis Bevacizumab Targeted therapies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martínez Hernández, J (2003) Principales neoplasias: Pulmón, mama, cérvix, colon, estómago, próstata, leucemias, linfomas y epiteliomas. Epidemiología, factores de riesgo y prevención», Nociones de salud pública. Díaz de Santos. MadridGoogle Scholar
  2. 2.
    Asociación Española Contra el Cáncer (ed.) (2007) El cáncer de pulmón en cifras, AECC. Available at
  3. 3.
    Instituto Nacional de Estadística. Defunciones según la causa de muerte en España (2005) Madrid, 2008. Available at:
  4. 4.
    Ries L, Eisner M, Kosary C et al. eds (2005) Cancer statistics review, 1975–2002. National Cancer Institute, BethesdaGoogle Scholar
  5. 5.
    Bunn P, Thatcher N (2008) Systemic treatment for advanced (stage IIIb/IV) non-small cell lung cancer: more treatment options; more things to consider. Conclusion. Oncologist 13[Suppl 1]:37–46CrossRefGoogle Scholar
  6. 6.
    Schiller J, Harrington D, Belani C et al (2002) Comparison of four chemotherapy regimens for advanced non-small cell lung cancer. N Engl J Med 346:92–98CrossRefPubMedGoogle Scholar
  7. 7.
    Le Chevalier T, Scagliotti G, Natale R, Danson S et al (2005) Efficacy of gemcitabine plus platinum chemotherapy compared with other platinum containing regimens in advanced non-small-cell lung cancer: A meta analysis of survival outcomes. Lung Cancer 47:69–80CrossRefPubMedGoogle Scholar
  8. 8.
    Jiang J, Liang X, Zhou X et al (2007) A metaanalysis of randomized controlled trials comparing carboplatin-based to cisplatin-based chemotherapy in advanced non-small cell lung cancer. Lung Cancer 57:348–358CrossRefPubMedGoogle Scholar
  9. 9.
    Ardizzoni A, Boni L, Tiseo M et al (2007) Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: an individual patient data meta-analysis. J Natl Cancer Inst 99:847–857CrossRefPubMedGoogle Scholar
  10. 10.
    Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small cell lung cancer. J Clin Oncol 26:3543–3551CrossRefPubMedGoogle Scholar
  11. 11.
    Scagliotti G, Hanna N, Fossella F et al (2009) The differential efficacy of pemetrexed according to NSCLC histology: a review of two phase III studies. Oncologist 4:253–263CrossRefGoogle Scholar
  12. 12.
    Rossi A, Maione P, Bareschino MA et al (2010) The emerging role of histology in the choice of first-line treatment of advanced non-small cell lung cancer: implication in the clinical decisionmaking. Curr Med Chem 17:1030–1038CrossRefPubMedGoogle Scholar
  13. 13.
    Arteaga C (2003) Targeting HER1/EGFR: a molecular approach to cancer therapy. Semin Oncol 30:3–14Google Scholar
  14. 14.
    Pirker R, Pereira JR, Szczesna A et al (2009) FLEX Study Team. Cetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373:1525–1531CrossRefPubMedGoogle Scholar
  15. 15.
    Pao W, Miller VA (2005) Epidermal growth factor receptor mutations, small molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23:2556–2568CrossRefPubMedGoogle Scholar
  16. 16.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of nonsmall-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139CrossRefPubMedGoogle Scholar
  17. 17.
    Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500CrossRefPubMedGoogle Scholar
  18. 18.
    Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101:13306–13311CrossRefPubMedGoogle Scholar
  19. 19.
    Rosell R, Moran T, Queralt C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967CrossRefPubMedGoogle Scholar
  20. 20.
    Tanaka F, Matsumoto S; Takuwa T et al (2007) Clinicopathological features in correlation with epidermal growth factor receptor gene mutations in non-small cell lung cancer (NSCLC). J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement) abstr 21148Google Scholar
  21. 21.
    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049CrossRefPubMedGoogle Scholar
  22. 22.
    Ferrara N (1995) The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat 36:127–137CrossRefPubMedGoogle Scholar
  23. 23.
    Gridelli C, Maione P, Rossi A, De Marinis F (2007) The role of bevacizumab in treating nonsmall cell lung cancer: current indications and future developments. Oncologist 1183–1193Google Scholar
  24. 24.
    Shih T, Lindley C (2006) Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther 28:1779–1802CrossRefPubMedGoogle Scholar
  25. 25.
    William WN Jr, Kies MS, Fossella FV et al (2010) Phase 2 study of carboplatin, docetaxel, and bevacizumab as frontline treatment for advanced nonsmall-cell lung cancer. Cancer 116:2401–2408PubMedGoogle Scholar
  26. 26.
    Dalsania CJ, Hageboutros A, Harris E et al (2007) Phase II trial of bevacizumab plus pemetrexed and carboplatin in previously untreated advanced nonsquamous non-small cell lung cancer. J Clin Oncol:18163Google Scholar
  27. 27.
    Herbst R, O’Neill V, Fehrenbacher L et al (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non-smallcell lung cancer. J Clin Oncol 25:4743–4750CrossRefPubMedGoogle Scholar
  28. 28.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355: 2542–2550CrossRefPubMedGoogle Scholar
  29. 29.
    Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234CrossRefPubMedGoogle Scholar
  30. 30.
    Ciuleanu T, Brodowicz T, Zielinski C et al (2009) Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer: a randomised, doubleblind, phase 3 study. Lancet 374:1432–1440CrossRefPubMedGoogle Scholar
  31. 31.
    Cappuzzo F, Ciuleanu T, Stelmakh L et al (2009) SATURN: a double-blind, randomized, phase III study of maintenance erlotinib versus placebo following non-progression with first-line platinum-based chemotherapy in patients with advanced NSCLC. J Clin Oncol 27:15sCrossRefGoogle Scholar
  32. 32.
    Miller VA, O’Connor P, Soh C, Kabbinavar F for the ATLAS Investigators (2009) A randomized, double-blind, placebo-controlled, phase IIIb trial (ATLAS) comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy with B for first-line treatment of locally advanced, recurrent, or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol 27:18sCrossRefGoogle Scholar
  33. 33.
    Nikolinakos PG, Altorki N, Yankelevitz D et al (2010) Plasma cytokine and angiogenic factor profiling identifies markers associated with tumor shrinkage in early-stage non-small cell lung cancer patients treated with pazopanib. Cancer Res 70:2171–2179CrossRefPubMedGoogle Scholar
  34. 34.
    Hanrahan EO, Lin HY, Kim ES et al (2010) Distinct patterns of cytokine and angiogenic factor modulation and markers of benefit for vandetanib and/or chemotherapy in patients with non-smallcell lung cancer. J Clin Oncol 28:193–201CrossRefPubMedGoogle Scholar
  35. 35.
    Duda DG, Ancukiewicz M, Jain RK (2010) Biomarkers of antiangiogenic therapy: how do we move from candidate biomarkers to valid biomarkers? J Clin Oncol 28:183–185CrossRefPubMedGoogle Scholar
  36. 36.
    Hiadovec J, Rossamn P (1973) Circulating endothelial cells isolated together with platelets and the experimental modification of their counts in rats. Thromb Res 3:665–674CrossRefGoogle Scholar
  37. 37.
    Blann AD, Woywodt A, Bertolini F et al (2005) Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 93:228–235PubMedGoogle Scholar
  38. 38.
    Bertolini F, Shaked Y, Mancuso P, Kerbel RS (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6:835–845CrossRefPubMedGoogle Scholar
  39. 39.
    Woywodt A, Blann A, Kirsch T et al (2006) Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost 4:671–677CrossRefPubMedGoogle Scholar
  40. 40.
    Steurer M, Kern J, Zitt M et al (2008) Quantification of circulating endothelial and progenitor cells: comparison of quantitative PCR and fourchannel flow cytometry. BMC Research Notes 1: 71CrossRefPubMedGoogle Scholar
  41. 41.
    Mancuso P, Antoniotti P, Quarna J (2009) Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin Cancer Res 15:267–273CrossRefPubMedGoogle Scholar
  42. 42.
    Boos CJ, Lip GY Blann AD (2006) Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol 48:1538–1547CrossRefPubMedGoogle Scholar
  43. 43.
    Mancuso P, Burlini A, Pruneri G et al (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–3661CrossRefPubMedGoogle Scholar
  44. 44.
    Goon PK, Lip GY, Boos CJ et al (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88CrossRefPubMedGoogle Scholar
  45. 45.
    Quirici N, Soligo D, Caneva L et al (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 115:186–194CrossRefPubMedGoogle Scholar
  46. 46.
    Nowak K, Rafat N, Belle S et al (2010) Circulating endothelial progenitor cells are increased in human lung cancer and correlate with stage of disease. Eur J Cardiothorac Surg 37:758–763CrossRefPubMedGoogle Scholar
  47. 47.
    Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972CrossRefPubMedGoogle Scholar
  48. 48.
    Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201CrossRefPubMedGoogle Scholar
  49. 49.
    Shaked Y, Ciarrocchi A, Franco M et al (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785–1787CrossRefPubMedGoogle Scholar
  50. 50.
    Döme B, Hendrix MJ, Paku S et al (2007) Alternative vascularisation mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol 170:1–15CrossRefPubMedGoogle Scholar
  51. 51.
    Wickersheim A, Kerber M, de Miguel LS et al (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777CrossRefPubMedGoogle Scholar
  52. 52.
    Mancusso P, Bertolini F (2010) Circulating endothelial cells as biomarkers in clinical oncology. Microvasc Res 79:224–228CrossRefGoogle Scholar
  53. 53.
    Seandel M, Butler J, Lynder D, Raffi S (2008) A catalytic role for proangiogenic marrow-derived cells in tumor neovascularization. Cancer Cell 13: 181–183CrossRefPubMedGoogle Scholar
  54. 54.
    Nolan DJ, Ciarrochi A, Mellick AS et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Gene Dev 21:1546–1558CrossRefPubMedGoogle Scholar
  55. 55.
    Gao D, Nolan DJ, Mellicc AS (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198.CrossRefPubMedGoogle Scholar
  56. 56.
    Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoiietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827CrossRefPubMedGoogle Scholar
  57. 57.
    Stoellting S, Trefzer T, Kisro J (2008) Low-dose oral metronomic chemotherapy prevents mobilization of endothelial progenitor cells into the blood of cancer patients. In Vivo 22:831–836Google Scholar
  58. 58.
    Beerepoot LV, Mehra N, Vermaat JS et al (2004) Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol 15:139–145CrossRefPubMedGoogle Scholar
  59. 59.
    Naik RP, Jin D, Chuang E et al (2008) Circulating endothelial progenitor cells correlate to stage in patients with invasive breast cancer. Breast Cancer Res Treat 107:133–138CrossRefPubMedGoogle Scholar
  60. 60.
    Kawaishi M, Fujiwara Y, Fukui T et al (2009) Circulating endothelial cells in non-small cell lung cancer patients treated with carboplatin and paclitaxel. J Thorac Oncol 4:208–213CrossRefPubMedGoogle Scholar
  61. 61.
    Dome B, Timar J, Dobos J et al (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66:7341–7347CrossRefPubMedGoogle Scholar
  62. 62.
    Hilbe W, Dirnhofer S, Oberwasserlechner F et al (2004) CD133 positive endothelial progenitor cells contribute to the tumour vasculature in non small cell lung cancer. J Clin Pathol 57:965–969CrossRefPubMedGoogle Scholar
  63. 63.
    Bocci G, Francia G, Man S (2003) Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci U S A. 100:12917–12922CrossRefPubMedGoogle Scholar
  64. 64.
    Emmenegger U, Francia G, Shaked Y, Kerbel RS (2010) Metronomic chemotherapy: principles and lessons learned from applications in treating metastatic prostate cancer. Recent results Cancer Res 180:165–183CrossRefPubMedGoogle Scholar
  65. 65.
    Kerbel RS; Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436CrossRefPubMedGoogle Scholar
  66. 66.
    Calleri A, Bono A (2009) Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin Cancer Res 15:7652–7657CrossRefPubMedGoogle Scholar
  67. 67.
    Vroling L, Lind JS, de Haas RR et al (2010) CD133 circulating haematopoietic progenitor cells predict for response to sorafenib plus erlotinib in non-small cell lung cancer patients. Br J Cancer 102:268–275CrossRefPubMedGoogle Scholar
  68. 68.
    Wang J, Huang C, Wei Xi-yin et al (2008) Changes of activated circulating endothelial cells and survivin in patients with non-small cell lung cancer after antiangiogenesis therapy. Chin Med J 121:2234–2240PubMedGoogle Scholar

Copyright information

© Feseo 2010

Authors and Affiliations

  • Tania Fleitas
    • 1
  • Vicenta Martínez-Sales
    • 2
  • José Gómez-Codina
    • 1
  • María Martín
    • 1
  • Gaspar Reynés
    • 1
  1. 1.Medical Oncology DepartmentLa Fe University HospitalValenciaSpain
  2. 2.Research CenterLa Fe University HospitalValenciaSpain

Personalised recommendations