Advertisement

Clinical and Translational Oncology

, Volume 12, Issue 7, pp 473–480 | Cite as

Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review

  • Ketao Jin
  • Lisong Teng
  • Yanping Shen
  • Kuifeng He
  • Zhenzhen Xu
  • Guangliang Li
Educational Series Current Technology in Cancer Research and Treatment

Abstract

Mouse cancer models have consistently been used to qualify new anticancer drugs in the development of human clinical trials. Rodent tumour models currently being used and which include transgenic tumour models, and those generated by planting human tumour cell lines subcutaneously in immunodeficient mice, do not sufficiently represent clinical cancer characteristics, especially with regard to metastasis and drug sensitivity. The increasingly used patient-derived human tumour tissue (PDTT) xenografts models implanted subcutaneously or in subrenal capsule in immunodeficient mice, such as athymic nude mice or severe combined immune deficient (SCID) mice, may provide a more accurate reflection of human tumour biological characteristics than tumour cell lines. The ability to passage patients’ fresh tumour tissues into large numbers of immunodeficient mice provides possibilities for better preclinical testing of new therapies for the treatment and better outcome for cancer. In this review, we outline the methods of establishing xenograft models, discuss the biological stability of PDTT xenograft models and demonstrate their roles in developing new anticancer drugs and testing therapeutic regimens in cancer patients.

Keywords

Biologic stability Cancer Preclinical application Tumour models Xenograft 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fichtner I, Slisow W, Gill J et al (2004) Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer 40:298–307CrossRefPubMedGoogle Scholar
  2. 2.
    Morton CL, Houghton PJ (2007) Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2:247–250.CrossRefPubMedGoogle Scholar
  3. 3.
    Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239PubMedGoogle Scholar
  4. 4.
    Johnson JI, Decker S, Zaharevitz D et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431CrossRefPubMedGoogle Scholar
  5. 5.
    Sausville A, Burger AM (2006) Contribution of human tumor xenografts to anticancer drug development. Cancer Res 66:3351–3354CrossRefPubMedGoogle Scholar
  6. 6.
    Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337CrossRefPubMedGoogle Scholar
  7. 7.
    Shimosato Y, Kameya T, Nagai K et al (1976) Transplantation of human tumors in nude mice. J Natl Cancer Inst 56:1251–1260PubMedGoogle Scholar
  8. 8.
    Fichtner I, Rolff J, Soong R et al (2008) Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 14:6456–6468CrossRefPubMedGoogle Scholar
  9. 9.
    Rubio-Viqueira B, Jimeno A, Cusatis G et al (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12:4652–4661CrossRefPubMedGoogle Scholar
  10. 10.
    Perez-Soler R, Kemp B, Wu QP et al (2000) Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res 6:4932–4938PubMedGoogle Scholar
  11. 11.
    Huynh H, Soo KC, Chow PK et al (2006) Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin Cancer Res 12:4306–4314CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Xue H, Cutz JC et al (2005) An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest 85:1392–1404CrossRefPubMedGoogle Scholar
  13. 13.
    Shu Q, Wong KK, Su JM et al (2008) Direct orthotopic transplantation of fresh surgical specimen preserves CD133+ tumor cells in clinically relevant mouse models of medulloblastoma and glioma. Stem Cells 26:1414–1424CrossRefPubMedGoogle Scholar
  14. 14.
    Cutz JC, Guan J, Bayani J et al (2006) Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res 12: 4043–4054CrossRefPubMedGoogle Scholar
  15. 15.
    Kim MP, Evans DB, Wang H et al (2009) Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc 4:1670–1680CrossRefPubMedGoogle Scholar
  16. 16.
    Visonneau S, Cesano A, Torosian MH et al (1997) Cell therapy of a highly invasive human breast carcinoma implanted in immunodeficient (SCID) mice. Clin Cancer Res 3:1491–1500PubMedGoogle Scholar
  17. 17.
    Marangoni E, Vincent-Salomon A, Auger N et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13:3989–3998CrossRefPubMedGoogle Scholar
  18. 18.
    Beckhove P, Schütz F, Diel IJ et al (2003) Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer 105:444–453CrossRefPubMedGoogle Scholar
  19. 19.
    Priolo C, Agostini M, Vena N et al (2010) Establishment and Genomic Characterization of Mouse Xenografts of Human Primary Prostate Tumors. Am J Pathol. Am J Pathol 176:1901–1913Google Scholar
  20. 20.
    Zhao XM, Quan GB, Zhou GB et al (2007) Conventional freezing, straw, and open-pulled straw vitrification of mouse two pronuclear (2-PN) stage embryos. Anim Biotechnol 18:203–212CrossRefPubMedGoogle Scholar
  21. 21.
    Seki S, Mazur P (2008) Effect of warming rate on the survival of vitrified mouse oocytes and on the recrystallization of intracellular ice. Biol Reprod 79:727–737CrossRefPubMedGoogle Scholar
  22. 22.
    Bedaiwy MA, Hussein MR, Biscotti C et al (2006) Cryopreservation of intact human ovary with its vascular pedicle. Hum Reprod 21:3258–3269CrossRefPubMedGoogle Scholar
  23. 23.
    Bedaiwy MA, Falcone T et al (2004) Reduction of post-transplantation ischaemic injury: intact ovary freezing and transplantation. Hum Reprod 19:1242–1244CrossRefPubMedGoogle Scholar
  24. 24.
    Van Kempen LC, Ruiter DJ, van Muijen GN et al (2003) The tumor microenvironment: a critical determinant of neoplastic evolution. EurJ Cell Biol 82:539–548CrossRefGoogle Scholar
  25. 25.
    Giovanella BC, Stehlin JS Jr, Shepard RC et al (1983) Correlation between response to chemotherapy of human tumors in patients and in nude mice. Cancer 52:1146–1152CrossRefPubMedGoogle Scholar
  26. 26.
    Sakakibara T, Xu Y, Bumpers HL et al (1996) Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. Cancer J Sci Am 2:291–300PubMedGoogle Scholar
  27. 27.
    Loukopoulos P, Kanetaka K, Takamura M et al (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29:193–203CrossRefPubMedGoogle Scholar
  28. 28.
    Kolfschoten GM, Pinedo HM, Scheffer PG et al (2000) Development of a panel of 15 human ovarian cancer xenografts for drug screening and determination of the role of the glutathione detoxification system. Gynecol Oncol 76:362–368CrossRefPubMedGoogle Scholar
  29. 29.
    Press JZ, Kenyon JA, Xue H et al (2008) Xenografts of primary human gynecological tumors grown under the renal capsule of NOD/SCID mice show genetic stability during serial transplantation and respond to cytotoxic chemotherapy. Gynecol Oncol 110:256–264CrossRefPubMedGoogle Scholar
  30. 30.
    Lee CH, Xue H, Sutcliffe M et al (2005) Establishment of subrenal capsule xenografts of primary human ovarian tumors in SCID mice: potential models. Gynecol Oncol 96:48–55CrossRefPubMedGoogle Scholar
  31. 31.
    Xu Y, Silver DF, Yang NP et al (1999) Characterization of human ovarian carcinomas in a SCID mouse model. Gynecol Oncol 72:161–170CrossRefPubMedGoogle Scholar
  32. 32.
    Angevin E, Glukhova L, Pavon C et al (1999) Human renal cell carcinoma xenografts in SCID mice: tumorigenicity correlates with a poor clinical prognosis. Lab Invest 79:879–888PubMedGoogle Scholar
  33. 33.
    Verschraegen CF, Hu W, Du Y et al (2003) Establishment and characterization of cancer cell cultures and xenografts derived from primary or metastatic Müllerian cancers. Clin Cancer Res 9:845–852PubMedGoogle Scholar
  34. 34.
    Schmidt KF, Ziu M, Schmidt NO et al (2004) Volume reconstruction techniques improve the correlation between histological and in vivo tumor volume measurements in mouse models of human gliomas. J Neurooncol 68:207–215CrossRefPubMedGoogle Scholar
  35. 35.
    Verstijnen CP, Arends JW, Moerkerk P et al (1988) Culturing and xenografting of primary colorectal carcinoma cells: comparison of in vitro, and in vivo model and primary tumor. Anticancer Res 8:1193–1200PubMedGoogle Scholar
  36. 36.
    Whiteford CC, Bilke S, Greer BT et al (2007) Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res 67:32–40CrossRefPubMedGoogle Scholar
  37. 37.
    Wei JS, Greer BT, Westermann F et al (2004) Prediction of clinical outcome using gene expression profiling and artificial neural networks for patients with neuroblastoma. Cancer Res 64:6883–6891CrossRefPubMedGoogle Scholar
  38. 38.
    Son CG, Bilke S, Davis S et al (2005) Database of mRNA gene expression profiles of multiple human organs. Genome Res 15:443–450CrossRefPubMedGoogle Scholar
  39. 39.
    Khanna C, Khan J, Nguyen P et al (2001) Metastasis associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61:3750–3759PubMedGoogle Scholar
  40. 40.
    Hammer S, Sommer A, Fichtner I et al (2010) Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res 16:1452–1465CrossRefPubMedGoogle Scholar
  41. 41.
    Rajeshkumar NV, Tan AC, De Oliveira E et al (2009) Antitumor effects and biomarkers of activity of AZD0530, a Src inhibitor, in pancreatic cancer. Clin Cancer Res 15:4138–4146CrossRefPubMedGoogle Scholar
  42. 42.
    Maris JM, Courtright J, Houghton PJ et al (2008) Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer 50:581–587CrossRefPubMedGoogle Scholar
  43. 43.
    Langdon SP, Hendriks HR, Braakhuis BJ et al (1994) Preclinical phase II studies in human tumor xenografts: a European multicenter follow-up study. Ann Oncol 5:415–422PubMedGoogle Scholar
  44. 44.
    Huynh H, Chow PK, Palanisamy N et al (2008) Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol 49:52–60CrossRefPubMedGoogle Scholar
  45. 45.
    Wang Z, Zhou J, Fan J et al (2008) Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 14:5124–5130CrossRefPubMedGoogle Scholar
  46. 46.
    Houghton PJ, Morton CL, Tucker C et al (2007) The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49:928–940CrossRefPubMedGoogle Scholar
  47. 47.
    Boven E, Winograd B, Berger DP et al (1992) Phase II preclinical drug screening in human tumor xenografts: a first European multicenter collaborative study. Cancer Res 52:5940–5947PubMedGoogle Scholar
  48. 48.
    Kelland LR (2004) Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40: 827–836CrossRefPubMedGoogle Scholar
  49. 49.
    Visonneau S, Cesano A, Torosian MH et al (1998) Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. Am J Pathol 152:1299–1311PubMedGoogle Scholar
  50. 50.
    Clarke R (1996) Animal models of breast cancer: their diversity and role in biomedical research. Breast Cancer Res Treat 39:1–6CrossRefPubMedGoogle Scholar
  51. 51.
    Fingert HJ, Chen Z, Mizrahi N et al (1987) Rapid growth of human cancer cells in a mouse model with fibrin clot subrenal capsule assay. Cancer Res 47:3824–3829PubMedGoogle Scholar
  52. 52.
    Hoehn W, Schroeder FH, Reimann JF et al (1980) Human prostatic adenocarcinoma: some characteristics of a serially transplantable line in nude mice (PC 82). Prostate 1:95–104CrossRefPubMedGoogle Scholar
  53. 53.
    Céspedes MV, Casanova I, Parreño M et al (2006) Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 8:318–329CrossRefPubMedGoogle Scholar

Copyright information

© Feseo 2010

Authors and Affiliations

  • Ketao Jin
    • 1
    • 2
  • Lisong Teng
    • 1
  • Yanping Shen
    • 1
  • Kuifeng He
    • 1
  • Zhenzhen Xu
    • 3
  • Guangliang Li
    • 1
  1. 1.Department of Surgical Oncology First Affiliated HospitalCollege of Medicine Zhejiang UniversityHangzhou, ZhejiangChina
  2. 2.Department of SurgeryZhuji HospitalZhuji, ZhejiangChina
  3. 3.Sir Run Run Shaw Institute of Clinical MedicineZhejiang University Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhou, ZhejiangChina

Personalised recommendations