Clinical and Translational Oncology

, Volume 12, Issue 4, pp 261–270 | Cite as

Biomarkers in colorectal cancer

  • Ben Markman
  • Víctor Rodríguez-Freixinos
  • Josep Tabernero
Educational Series Current Technology in Cancer Research and Treatment

Abstract

Systemic therapies available for treatment of colorectal cancer have increased in recent years, leading to improved clinical outcomes. However, a significant proportion of patients fail to derive meaningful benefits, whereas others suffer from unacceptable toxicities. Therefore, not only does the search for novel and effective anticancer agents continue, there is also a pressing need to optimise the use of all treatments in the therapeutic armamentarium. In addition to knowledge gleaned from well-designed and relevant clinical trials, increasing effort is being invested into biomarkers. The identification and implementation of validated biomarkers has the potential to further our understanding of the biology of colorectal cancer and also to greatly improve the efficiency with which cancer treatments are administered.

Keywords

Colorectal cancer Biomarkers Chemotherapy Targeted therapies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organization (2009) Fact Sheet No. 297: Cancer. Available at http://www.who.int/mediacentre/factsheets/fs297/en/
  2. 2.
    Atkinson AJ, Colburn WA, DeGruttola VG et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69: 89–95CrossRefGoogle Scholar
  3. 3.
    Chen CC, Yang SH, Lin JK et al (2005) Is it reasonable to add preoperative serum level of CEA and CA19-9 to staging for colorectal cancer? J Surg Res 124:169–174CrossRefPubMedGoogle Scholar
  4. 4.
    Locker GY, Hamilton S, Harris J et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24:5313–5327CrossRefPubMedGoogle Scholar
  5. 5.
    Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257PubMedGoogle Scholar
  6. 6.
    Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618CrossRefPubMedGoogle Scholar
  7. 7.
    Kim GP, Colangelo LH, Wieand HS et al (2007) Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 25:767–772CrossRefPubMedGoogle Scholar
  8. 8.
    Sargent DJ, Marsoni S, Thibodeau SN et al (2008) Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): A pooled molecular reanalysis of randomized chemotherapy trials. J Clin Oncol 26[15S]:abstr 4008Google Scholar
  9. 9.
    Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257CrossRefPubMedGoogle Scholar
  10. 10.
    Bertagnolli MM, Niedzwiecki D, Compton CC et al (2009) Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol 27:1814–1821CrossRefPubMedGoogle Scholar
  11. 11.
    Zaanan A, Cuilliere-Dartigues P, Guilloux A et al (2009) Impact of p53 expression and microsatellite instability on stage III colon cancer diseasefree survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin. Ann Oncol. DOI: 10.1093/annonc/mdp383Google Scholar
  12. 12.
    Jen J, Kim H, Piantadosi S et al (1994) Allelic loss of chromosome 18q and prognosis in colorectal cancer. N Engl J Med 331:213–221CrossRefPubMedGoogle Scholar
  13. 13.
    Shibata D, Reale MA, Lavin P et al (1996) The DCC protein and prognosis in colorectal cancer. N Engl J Med 335:1727–1732CrossRefPubMedGoogle Scholar
  14. 14.
    Popat S, Zhao D, Chen Z et al (2007) Relationship between chromosome 18q status and colorectal cancer prognosis: a prospective, blinded analysis of 280 patients. Anticancer Res 27:627–633PubMedGoogle Scholar
  15. 15.
    Munro AJ, Lain S, Lane DP (2005) P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer 92:434–444PubMedGoogle Scholar
  16. 16.
    Cohen SJ, Punt CJ, Iannotti N et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26:3213–3221CrossRefPubMedGoogle Scholar
  17. 17.
    Cohen SJ, Punt CJ, Iannotti N et al (2009) Prognostic significance of circulating tumor cells in patients with metastatic colorectal cancer. Ann Oncol 20:1223–1229CrossRefPubMedGoogle Scholar
  18. 18.
    Allegra CJ, Paik S, Colangelo LH et al (2003) Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes’ B and C colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J Clin Oncol 21:241–250CrossRefPubMedGoogle Scholar
  19. 19.
    Popat S, Matakidou A, Houlston RS (2004) Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and metaanalysis. J Clin Oncol 22:529–536CrossRefPubMedGoogle Scholar
  20. 20.
    Ciaparrone M, Quirino M, Schinzari G et al (2006) Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology 70:366–377CrossRefPubMedGoogle Scholar
  21. 21.
    Salonga D, Danenberg KD, Johnson M et al (2000) Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 6:1322–1327PubMedGoogle Scholar
  22. 22.
    Soong R, Shah N, Salto-Tellez M et al (2008) Prognostic significance of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase protein expression in colorectal cancer patients treated with or without 5-fluorouracil-based chemotherapy. Ann Oncol 19:915–919CrossRefPubMedGoogle Scholar
  23. 23.
    Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P (1996) Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 98:610–615CrossRefPubMedGoogle Scholar
  24. 24.
    Pare L, Marcuello E, Altes A et al (2008) Pharmacogenetic prediction of clinical outcome in advanced colorectal cancer patients receiving oxaliplatin/5-fluorouracil as first-line chemotherapy. Br J Cancer 99:1050–1055CrossRefPubMedGoogle Scholar
  25. 25.
    Shirota Y, Stoehlmacher J, Brabender J et al (2001) ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 19:4298–4304PubMedGoogle Scholar
  26. 26.
    Jansen WJ, Zwart B, Hulscher ST et al (1997) CPT-11 in human colon-cancer cell lines and xenografts: characterization of cellular sensitivity determinants. Int J Cancer 70:335–340CrossRefPubMedGoogle Scholar
  27. 27.
    Kostopoulos I, Karavasilis V, Karina M et al (2009) Topoisomerase I but not thymidylate synthase is associated with improved outcome in patients with resected colorectal cancer treated with irinotecan containing adjuvant chemotherapy. BMC Cancer 9:339CrossRefPubMedGoogle Scholar
  28. 28.
    Braun MS, Richman SD, Quirke P et al (2008) Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 26:2690–2698CrossRefPubMedGoogle Scholar
  29. 29.
    Koopman M, Knijn N, Richman S et al (2009) The correlation between Topoisomerase-I (Topo1) expression and outcome of treatment with capecitabine and irinotecan in advanced colorectal cancer (ACC) patients (pts) treated in the CAIRO study of the Dutch Colorectal Cancer Group (DCCG) 7:321–322Google Scholar
  30. 30.
    Innocenti F, Undevia SD, Iyer L et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388CrossRefPubMedGoogle Scholar
  31. 31.
    Iyer L, Das S, Janisch L et al (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2: 43–47CrossRefPubMedGoogle Scholar
  32. 32.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137CrossRefPubMedGoogle Scholar
  33. 33.
    Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345CrossRefPubMedGoogle Scholar
  34. 34.
    Saltz LB, Meropol NJ, Loehrer PJ, Sret al (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208CrossRefPubMedGoogle Scholar
  35. 35.
    Chung KY, Shia J, Kemeny NE et al (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810CrossRefPubMedGoogle Scholar
  36. 36.
    Barber TD, Vogelstein B, Kinzler KW, Velculescu VE (2004) Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 351:2883CrossRefPubMedGoogle Scholar
  37. 37.
    Moroni M, Veronese S, Benvenuti S et al (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6:279–286CrossRefPubMedGoogle Scholar
  38. 38.
    Sartore-Bianchi A, Moroni M, Veronese S et al (2007) Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol 25:3238–3245CrossRefPubMedGoogle Scholar
  39. 39.
    Khambata-Ford S, Garrett CR, Meropol NJ et al (2007) Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 25:3230–3237CrossRefPubMedGoogle Scholar
  40. 40.
    Jacobs B, De Roock W, Piessevaux H et al (2009) Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol 27:5068–5074CrossRefPubMedGoogle Scholar
  41. 41.
    Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359: 1757–1765CrossRefPubMedGoogle Scholar
  42. 42.
    Amado RG, Wolf M, Peeters M et al (2008) Wildtype KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634CrossRefPubMedGoogle Scholar
  43. 43.
    Bokemeyer C, Bondarenko I, Makhson A et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27:663–671CrossRefPubMedGoogle Scholar
  44. 44.
    Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417CrossRefPubMedGoogle Scholar
  45. 45.
    Van Cutsem E, Lang I, Folprecht G et al (2010) Cetuximab plus FOLFIRI in the treatment of metastatic colorectal cancer (mCRC): The influence of KRAS and BRAF biomarkers on outcome: Updated data from the CRYSTAL trial. Gastrointestinal Cancers Symposium, Orlando, FL, abstr 281Google Scholar
  46. 46.
    Siena S, Cassidy J, Tabernero J et al (2010) Randomized phase III study of panitumumab (pmab) with FOLFOX4 compared to FOLFOX4 alone as first-line treatment (tx) for metastatic colorectal cancer (mCRC): PRIME trial. Gastrointestinal Cancers Symposium, Orlando, FL, abstr 283Google Scholar
  47. 47.
    Allegra CJ, Jessup JM, Somerfield MR et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to antiepidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–2096CrossRefPubMedGoogle Scholar
  48. 48.
    Andreyev HJ, Norman AR, Cunningham D, et al (1998) Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst 90:675–684CrossRefPubMedGoogle Scholar
  49. 49.
    Andreyev HJ, Norman AR, Cunningham D et al (2001) Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 85:692–696CrossRefPubMedGoogle Scholar
  50. 50.
    Ogino S, Meyerhardt JA, Irahara N et al (2009) KRAS mutation in stage III colon cancer and clinical outcome following intergroup trial CALGB 89803. Clin Cancer Res 15:7322–7329CrossRefPubMedGoogle Scholar
  51. 51.
    Fransen K, Klintenas M, Osterstrom A et al (2004) Mutation analysis of the BRAF, ARAF and RAF-1 genes in human colorectal adenocarcinomas. Carcinogenesis 25:527–533CrossRefPubMedGoogle Scholar
  52. 52.
    Tol J, Dijkstra JR, Vink-Börger ME et al (2009) BRAF mutation is associated with a decreased outcome in patients (pts) with advanced colorectal cancer (ACC) treated with chemotherapy and bevacizumab with or without cetuximab. Eur J Cancer Supps 7:321 abstr 6002Google Scholar
  53. 53.
    Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712CrossRefPubMedGoogle Scholar
  54. 54.
    Lambrechts D, De Roock W, Prenen H et al (2009) The role of KRAS, BRAF, NRAS, and PIK3CA mutations as markers of resistance to cetuximab in chemorefractory metastatic colorectal cancer. J Clin Oncol 27[15S]:abstr 4020Google Scholar
  55. 55.
    Prenen H, De Schutter J, Jacobs B et al (2009) PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res 15:3184–3188CrossRefPubMedGoogle Scholar
  56. 56.
    Sartore-Bianchi A, Martini M, Molinari F et al (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFRtargeted monoclonal antibodies. Cancer Res 69:1851–1857CrossRefPubMedGoogle Scholar
  57. 57.
    Jhawer M, Goel S, Wilson AJ et al (2008) PIK3-CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68:1953–1961CrossRefPubMedGoogle Scholar
  58. 58.
    Zhao L, Vogt PK (2008) Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci U S A 105:2652–2657CrossRefPubMedGoogle Scholar
  59. 59.
    Negri FV, Bozzetti C, Lagrasta CA et al (2009) PTEN status in advanced colorectal cancer treated with cetuximab. Br J Cancer 102:162–164CrossRefPubMedGoogle Scholar
  60. 60.
    Laurent-Puig P, Cayre A, Manceau G et al (2009) Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 27:5924–5930CrossRefPubMedGoogle Scholar
  61. 61.
    Garm Spindler KL, Pallisgaard N, Rasmussen AA et al (2009) The importance of KRAS mutations and EGF61A>G polymorphism to the effect of cetuximab and irinotecan in metastatic colorectal cancer. Ann Oncol 20:879–884CrossRefPubMedGoogle Scholar
  62. 62.
    Bibeau F, Lopez-Crapez E, Di Fiore F et al (2009) Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27:1122–1129CrossRefPubMedGoogle Scholar
  63. 63.
    Jonker DJ, O’Callaghan CJ, Karapetis CS et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048CrossRefPubMedGoogle Scholar
  64. 64.
    Tejpar S, Peeters M, Humblet Y et al (2007) Phase I/II study of cetuximab dose-escalation in patients with metastatic colorectal cancer (mCRC) with no or slight skin reactions on cetuximab standard dose treatment (EVEREST): Pharmacokinetic (PK), Pharmacodynamic (PD) and efficacy data. J Clin Oncol 25[18S]:abstr 4037Google Scholar
  65. 65.
    Kerr D, Gray R, Quirke P et al (2009) A quantitative multigene RT-PCR assay for prediction of recurrence in stage II colon cancer: Selection of the genes in four large studies and results of the independent, prospectively designed QUASAR validation study. J Clin Oncol 27[15S]:abstr 4000Google Scholar

Copyright information

© Feseo 2010

Authors and Affiliations

  • Ben Markman
    • 1
  • Víctor Rodríguez-Freixinos
    • 1
  • Josep Tabernero
    • 2
  1. 1.Medical Oncology DepartmentVall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
  2. 2.Medical Oncology DepartmentVall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain

Personalised recommendations