Clinical and Translational Oncology

, Volume 12, Issue 1, pp 15–21 | Cite as

Molecular basis for the treatment of renal cell carcinoma

  • Cristina Suárez
  • Rafael Morales
  • Eva Muñoz
  • Jordi Rodón
  • Claudia M. Valverde
  • Joan Carles
Educational Series

Abstract

Renal cell carcinoma (RCC) is a heterogeneous malignancy whose incidence rate has notably increased in recent years without any evident reason. Traditionally, RCC has been resistant to classic treatments (chemotherapy, radiotherapy and hormonal therapy), with only a small percentage of patients benefiting from cytokine therapy. Different hereditary syndromes have been associated with RCC, Von Hippel Lindau (VHL) being the most important syndrome. Understanding key molecular pathways implicated in the tumorigenesis of RCC has crystallised in the development of more effective therapies. Specifically, drugs targeting VEGF (bevacizumab, sunitinib, sorafenib, axitinib, pazopanib) and PI3K-mTOR (temsirolimus and everolimus) have become the cornerstone of renal cancer treatment.

Keywords

Renal cell carcinoma Molecular basis Targeted therapies Key pathways 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim WY, Kaelin WG (2004) Role of VHL gene mutation in human cancer. J Clin Oncol 22:4991–5004CrossRefPubMedGoogle Scholar
  2. 2.
    Latif F, Tory K, Gnarra J et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320CrossRefPubMedGoogle Scholar
  3. 3.
    Linehan WM, Walther MM, Zbar B (2003) The genetic basis of cancer of the kidney. J Urol 170: 2163–2172CrossRefPubMedGoogle Scholar
  4. 4.
    Lonser RR, Glenn GM, Walther M et al (2003) von Hippel-Lindau disease. Lancet 361:2059–2067CrossRefPubMedGoogle Scholar
  5. 5.
    Knudson AG Jr (1986) Genetics of human cancer. Annu Rev Genet 20:231–251CrossRefPubMedGoogle Scholar
  6. 6.
    Shuin T, Kondo K, Torigoe S et al (1994) Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54:2852–2855PubMedGoogle Scholar
  7. 7.
    Herman JG, Latif F, Weng Y et al (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91:9700–9704CrossRefPubMedGoogle Scholar
  8. 8.
    Maer ER (2004) VHL disease. Curr Mol Med 4:833CrossRefGoogle Scholar
  9. 9.
    Brauch H, Weirich G, Brieger J et al (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60:1942–1948PubMedGoogle Scholar
  10. 10.
    Schraml P, Struckmann K, Hatz F et al (2002) VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol 196:186–193CrossRefPubMedGoogle Scholar
  11. 11.
    Iliopoulos O, Kibel A, Gray S et al (1995) Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1:822–826CrossRefPubMedGoogle Scholar
  12. 12.
    Gnarra JR, Zhou S, Merrill MJ et al (1996) Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proc Natl Acad Sci U S A 93:10589–10594CrossRefPubMedGoogle Scholar
  13. 13.
    Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90:4304–4308CrossRefPubMedGoogle Scholar
  14. 14.
    Iliopoulos O, Levy AP, Jiang C et al (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A 93:10595–10599CrossRefPubMedGoogle Scholar
  15. 15.
    Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86:670–674CrossRefPubMedGoogle Scholar
  16. 16.
    de Paulsen N, Brychzy A, Fournier MC et al (2001) Role of transforming growth factor-alpha in von Hippel-Lindau (VHL) (−/−) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc Natl Acad Sci U S A 98:1387–1392CrossRefPubMedGoogle Scholar
  17. 17.
    Harris AL (2002) Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47CrossRefPubMedGoogle Scholar
  18. 18.
    Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682CrossRefPubMedGoogle Scholar
  19. 19.
    Zbar B, Tory K, Merino M et al (1994) Hereditary papillary renal cell carcinoma. J Urol 151:561–566PubMedGoogle Scholar
  20. 20.
    Schmidt L, Junker K, Nakaigawa N et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350CrossRefPubMedGoogle Scholar
  21. 21.
    Schmidt L, Junker K, Weirich G et al (1998) Two North American families with hereditary papillary renal carcinoma and identical novel mutations in the MET proto-oncogene. Cancer Res 58:1719–1722PubMedGoogle Scholar
  22. 22.
    Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer and stem cells. Nat Rev Cancer 6:637–645CrossRefPubMedGoogle Scholar
  23. 23.
    Zhuang Z, Park WS, Pack S et al (1998) Trisomy 7: harboring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Gen 20:66–69CrossRefGoogle Scholar
  24. 24.
    Kovacs G (1993) Molecular cytogenetics of renal cell tumors. Adv Cancer Res 62:89–124CrossRefPubMedGoogle Scholar
  25. 25.
    Schimdt L, Junker K, Nakaigawa N et al (1999) Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18:2343–2350CrossRefGoogle Scholar
  26. 26.
    Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361CrossRefPubMedGoogle Scholar
  27. 27.
    Kiuru M, Launonen V (2004) Hereditary leiomyomatosis and renal cell cancer (HLRCC). Curr Mol Med 4:869–875CrossRefPubMedGoogle Scholar
  28. 28.
    Toro JR, Nickerson ML, Wei MH et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73:95–106CrossRefPubMedGoogle Scholar
  29. 29.
    Selak MA, Armour SM, MacKenzie ED et al (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85CrossRefPubMedGoogle Scholar
  30. 30.
    Isaacs JS, Jung YJ, Mole DR et al (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153CrossRefPubMedGoogle Scholar
  31. 31.
    Birt AR, Hogg GR, Dubé WJ (1997) Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 133:1674–1677Google Scholar
  32. 32.
    Pavlovich CP, Walther MM, Eyler RA et al (2002) Renal tumors in the Birt-Hogg-Dubé syndrome. Am J Surg Pathol 26:1542–1552CrossRefPubMedGoogle Scholar
  33. 33.
    Nickerson ML, Warren MB, Toro JR et al (2002) Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dubé syndrome. Cancer Cell 2:157–164CrossRefPubMedGoogle Scholar
  34. 34.
    Vocke CD, Yang Y, Pavlovich CP et al (2005) High frequency of somatic frameshift BHD gene mutations in Birt-Hogg-Dubé-associated renal tumors. J Natl Cancer Inst 97:931–935PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt LS, Nickerson ML, Warren MB et al (2005) Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt-Hogg-Dubé syndrome. Am J Hum Genet 76:1023–1033CrossRefPubMedGoogle Scholar
  36. 36.
    Zhong H, Bowen JP (2007) Molecular design and clinical development of VEGFR kinase inhibitors. Curr Top Med Chem 7:1379–1393CrossRefPubMedGoogle Scholar
  37. 37.
    Kiselyov A, Balakin KV, Tkachenko SE (2007) VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs 16:83–107CrossRefPubMedGoogle Scholar
  38. 38.
    Dvorak HF, Brown LF, Detmar M et al (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMedGoogle Scholar
  39. 39.
    Benjamin LE, Golijanin D, Itin A et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165CrossRefPubMedGoogle Scholar
  40. 40.
    Takahashi A, Sasaki H, Kim SJ et al (1994) Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res 54:4233–4237PubMedGoogle Scholar
  41. 41.
    Igarashi H, Esumi M, Ishida H et al (2002) Vascular endothelial growth factor overexpression is correlated with von Hippel-Lindau tumor suppressor gene inactivation in patients with sporadic renal cell carcinoma. Cancer 95:47–53CrossRefPubMedGoogle Scholar
  42. 42.
    Nicol D, Hii SI, Walsh M et al (1997) Vascular endothelial growth factor expression is increased in renal cell carcinoma. J Urol 157:1482–1486CrossRefPubMedGoogle Scholar
  43. 43.
    Na X, Wu G, Ryan CK et al (2003) Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol 170:588–592CrossRefPubMedGoogle Scholar
  44. 44.
    Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603CrossRefPubMedGoogle Scholar
  45. 45.
    Fingar DC, Salama S, Tsou C et al (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487CrossRefPubMedGoogle Scholar
  46. 46.
    Gingras AC, Gygi SP, Raught B et al (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437CrossRefPubMedGoogle Scholar
  47. 47.
    Higashiyama S, Iwabuki H, Morimoto C et al (2008) Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci 99:214–220CrossRefPubMedGoogle Scholar
  48. 48.
    Lager DJ, Slagel DD, Palechek PL (1994) The expression of epidermal growth factor receptor and transforming growth factor alpha in renal cell carcinoma. Mod Pathol 7:544–548PubMedGoogle Scholar
  49. 49.
    Pu YS, Huang CY, Kuo YZ et al (2009) Characterization of membranous and cytoplasmic EGFR expression in human normal renal cortex and renal cell carcinoma. J Biomed Sci 16:82CrossRefPubMedGoogle Scholar
  50. 50.
    Smith K, Gunaratnam L, Morley M et al (2005) Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/-renal cancer. Cancer Res 65:5221–5230CrossRefPubMedGoogle Scholar
  51. 51.
    Gunaratnam L, Morley M, Franovic A et al (2003) Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(−/−) renal cell carcinoma cells. 278:44966–44974Google Scholar
  52. 52.
    Prewett M, Rothman M, Waksal H et al (1998) Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res 4:2957–2966PubMedGoogle Scholar
  53. 53.
    Jermann M, Stahel RA, Salzberg M et al (2006) A phase II, open-label study of gefitinib (IRESSA) in patients with locally advanced, metastatic, or relapsed renal-cell carcinoma. Cancer Chemother Pharmacol 57:533–539CrossRefPubMedGoogle Scholar
  54. 54.
    Motzer RJ, Amato R, Todd M et al (2003) Phase II trial of antiepidermal growth factor antibody C225 in patients with advanced renal cell carcinoma. Invest New Drugs 21:99–101CrossRefPubMedGoogle Scholar
  55. 55.
    Bukowski RM, Kabbinavar FF, Figlin RA et al (2007) Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol 25:4536–4541CrossRefPubMedGoogle Scholar
  56. 56.
    Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400CrossRefPubMedGoogle Scholar
  57. 57.
    Escudier B, Pluzanska A, Koralewski P et al (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111CrossRefPubMedGoogle Scholar
  58. 58.
    Escudier BJ, Bellmunt J, Negrier S et al (2009) Final results of the phase III, randomized, double-blind AVOREN trial of first-line bevacizumab (BEV)+interferon-a2a (IFN) in metastatic renal cell carcinoma (mRCC) [abstract 5020]. J Clin Oncol 27[Suppl]:15sGoogle Scholar
  59. 59.
    Rini BI, Halabi S, Rosenberg JE et al (2008) Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26:5422–5428CrossRefPubMedGoogle Scholar
  60. 60.
    Rini BI, Halabi S, Rosenberg J et al (2009) Bevacizumab plus interferonalpha versus interferonalpha monotherapy in patients with metastatic renal cell carcinoma: results of overall survival for CALGB 90206 [abstract LBA5019]. J Clin Oncol 27[Suppl]:18sGoogle Scholar
  61. 61.
    Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337PubMedGoogle Scholar
  62. 62.
    Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124CrossRefPubMedGoogle Scholar
  63. 63.
    Motzer RJ, Hutson TE, Tomczak P et al (2009) Overall survival and updated results for sunitinib compared with interferon (IFN)-alfa in patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol 27:3584–3590CrossRefPubMedGoogle Scholar
  64. 64.
    Wilhelm SM, Carter C, Tang L et al (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109CrossRefPubMedGoogle Scholar
  65. 65.
    Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134CrossRefPubMedGoogle Scholar
  66. 66.
    Escudier B, Eisen T, Stadler WM et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27:3312–3318CrossRefPubMedGoogle Scholar
  67. 67.
    Rugo HS, Herbst RS, Liu G et al (2005) Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol 23:5474–5783CrossRefPubMedGoogle Scholar
  68. 68.
    Rixe O, Bukowski RM, Michaelson MD et al (2007) Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol 8:975–984CrossRefPubMedGoogle Scholar
  69. 69.
    Rini B, Wilding GT, Hudes G et al (2009) Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol 27:4462–4468CrossRefPubMedGoogle Scholar
  70. 70.
    Sonpavde G, Hutson TE (2007) Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep 9:115–119CrossRefPubMedGoogle Scholar
  71. 71.
    Hutson T, Davis ID, Machiels JP et al (2007) Pazopanib (GW786034) is active in metastatic renal cell carcinoma (RCC): interim results of a phase II randomised discontinuation trial (RDT). J Clin Oncol 25[Suppl]:5031Google Scholar
  72. 72.
    Sternberg CN, Szczylik C, Lee E et al (2009) A randomized, double-blind phase III study of pazopanib in treatment-naive and cytokine-pretreated patients with advanced renal cell carcinoma (RCC). J Clin Oncol 27[Suppl]:5021Google Scholar
  73. 73.
    Hudson CC, Liu M, Chiang GG et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014CrossRefPubMedGoogle Scholar
  74. 74.
    Hudes G, Carducci M, Tomczak P et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356:2271–2281CrossRefPubMedGoogle Scholar
  75. 75.
    Motzer R, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebocontrolled phase III trial. Lancet 372:449–456CrossRefPubMedGoogle Scholar

Copyright information

© Feseo 2010

Authors and Affiliations

  • Cristina Suárez
    • 1
  • Rafael Morales
    • 1
  • Eva Muñoz
    • 1
  • Jordi Rodón
    • 1
  • Claudia M. Valverde
    • 1
  • Joan Carles
    • 1
  1. 1.Department of Medical OncologyVall d’Hebrón University HospitalBarcelonaSpain

Personalised recommendations