Advertisement

Clinical and Translational Oncology

, Volume 11, Issue 7, pp 455–459 | Cite as

mTOR inhibitors and the anti-diabetic biguanide metformin: new insights into the molecular management of breast cancer resistance to the HER2 tyrosine kinase inhibitor lapatinib (Tykerb®)

  • Alejandro Vázquez-Martín
  • Cristina Oliveras-Ferraros
  • Sonia del Barco
  • Begoña Martín-Castillo
  • Javier A. Menéndez
Special Article

Abstract

The small molecule HER2 tyrosine kinase inhibitor (TKI) lapatinib (Tykerb®) is approved for the therapy of patients with HER2-positive breast carcinomas who have progressed on trastuzumab (Herceptin®). Unfortunately, the efficacy of this HER2 TKI is limited by both primary (inherent) and acquired resistance, the latter typically occurring within 12 months of starting therapy. One of the key factors limiting our understanding of the mechanisms involved in lapatinib resistance is the lack of published preclinical models. We herein review lapatinib-refractory models recently developed at the bench and the survival pathways discovered. As hyperactivation of the pharmacologically targetable PI3K/mTOR/p70S6K1 axis appears to be central to the occurrence of lapatinib resistance, preclinical data showing enhanced antitumour effects when combining lapatinib with mTOR inhibitors (e.g., rapamycin analogues and NVP-BEZ235) highlight the importance of translational work to yield clinically useful regimens capable of delaying or treating lapatinib resistance. The unexpected ability of the anti-type II diabetes drug metformin to inactivate mTOR and decrease p70S6K1 activity further reveals that this biguanide, generally considered non-toxic and remarkably inexpensive, might be considered for new combinatorial lapatinib-based protocols in HER2-overexpressing breast cancer patients.

Keywords

HER2 Tyrosine kinase inhibitors mTOR Rapamycin Lapatinib Metformin Vreast cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nahta R, Yu D, Hung MC et al (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3:269–280PubMedCrossRefGoogle Scholar
  2. 2.
    Chen FL, Xia W, Spector NL (2008) Acquired resistance to small molecule ErbB2 tyrosine kinase inhibitors. Clin Cancer Res 14:6730–6734PubMedCrossRefGoogle Scholar
  3. 3.
    Nagata Y, Lan KH, Zhou X et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6:117–127PubMedCrossRefGoogle Scholar
  4. 4.
    Xia W, Husain I, Liu L et al (2007) Lapatinib antitumor activity is not dependent upon phosphatase and tensin homologue deleted on chromosome 10 in ErbB2-overexpressing breast cancers. Cancer Res 67:1170–1175PubMedCrossRefGoogle Scholar
  5. 5.
    Xia W, Bacus S, Hegde P et al (2006) A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci U S A 103:7795–7800PubMedCrossRefGoogle Scholar
  6. 6.
    Eichhorn PJA, Gili M, Scaltriti M et al (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res 68:9221–9230PubMedCrossRefGoogle Scholar
  7. 7.
    Maira SM, Stauffer F, Brueggen J et al (2008) Identification and characterization of NVPBEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851–1863PubMedCrossRefGoogle Scholar
  8. 8.
    Serra V, Markman B, Scaltriti M et al (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68:8022–8030PubMedCrossRefGoogle Scholar
  9. 9.
    Vazquez-Martin A, Oliveras-Ferraros C, Colomer R et al (2008) Low-scale phosphoproteome analyses identify the mTOR effector p70 S6 kinase 1 as a specific biomarker of the dual-HER1/HER2 tyrosine kinase inhibitor lapatinib (Tykerb) in human breast carcinoma cells. Ann Oncol 19:1097–1109PubMedCrossRefGoogle Scholar
  10. 10.
    Zakikhani M, Dowling R, Fantus IG et al (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66:10269–10273PubMedCrossRefGoogle Scholar
  11. 11.
    Dowling RJ, Zakikhani M, Fantus IG et al (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67:10804–10812PubMedCrossRefGoogle Scholar
  12. 12.
    Shell SA, Lyass L, Trusk PB et al (2008) Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle 7:1769–1775PubMedGoogle Scholar
  13. 13.
    Anisimov VN, Berstein LM, Egormin PA et al (2005) Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 40:685–693PubMedCrossRefGoogle Scholar
  14. 14.
    Anisimov VN, Egormin PA, Bershtein LM et al (2005) Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull Exp Biol Med 139:721–723PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang L, He H, Balschi JA (2007) Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol 293:H457–H466PubMedCrossRefGoogle Scholar
  16. 16.
    Jin Q, Feng L, Behrens C et al (2007) Implication of AMP-activated protein kinase and Akt-regulated survivin in lung cancer chemopreventive activities of deguelin. Cancer Res 67:11630–11639PubMedCrossRefGoogle Scholar
  17. 17.
    Vazquez-Martin A, Oliveras-Ferraros C, del Barco S et al (2009) The antidiabetic drug metformin: a pharmaceutical AMPK activator to overcome breast cancer resistance to HER2 inhibitors while decreasing risk of cardiomyopathy. Ann Oncol 20:592–595PubMedCrossRefGoogle Scholar
  18. 18.
    Xia W, Bisi J, Strum J et al (2006) Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res 66:1640–1647PubMedCrossRefGoogle Scholar
  19. 19.
    Hede K (2008) Doctors seek to prevent breast cancer recurrence by lowering insulin levels. J Natl Cancer Inst 100:530–532PubMedCrossRefGoogle Scholar
  20. 20.
    Goodwin PJ, Pritchard KI, Ennis M et al (2008) Insulin-lowering effects of metformin in women with early breast cancer. Clin Breast Cancer 8:501–505PubMedCrossRefGoogle Scholar
  21. 21.
    Berstein LM (2009) Metformin, insulin, breast cancer and more…. Future Oncol 5:309–312PubMedCrossRefGoogle Scholar
  22. 22.
    Jiralerspong S, Giordano SH, Meric-Bernstam F et al (2008) The effects of metformin on pathological complete response (pCR) rates in diabetic breast cancer (BC) receiving neoadjuvant systemic therapy (NST). J Clin Oncol 26[Suppl 15]:13s [ASCO Abstract 528]Google Scholar
  23. 23.
    Cazzaniga M, Bonanni B, Guerrieri-Gonzaga A, Decensi A (2009) Is it time to test metformin in breast cancer clinical trials? Cancer Epidemiol Biomarkers Prev 18:701–705PubMedCrossRefGoogle Scholar
  24. 24.
    Oliveras-Ferraros C, Vazquez-Martin A, Menendez JA (2009) Genome-wide inhibitory impact of the AMPK activator metformin on [kinesins, tubulins, histones, auroras and polo-like kinases] M-phase cell cycle genes in human breast cancer cells. Cell Cycle 8:1633–1636PubMedGoogle Scholar
  25. 25.
    Liu B, Fan Z, Edgerton SM et al (2009) Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 8 [Epub ahead of print]Google Scholar
  26. 26.
    Alimova IN, Liu B, Fan Z et al (2009) Metformin inhibits breast cancer cells growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8:909–915PubMedGoogle Scholar
  27. 27.
    Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009) The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein over-expression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 8:88–96PubMedGoogle Scholar

Copyright information

© Feseo 2009

Authors and Affiliations

  • Alejandro Vázquez-Martín
    • 1
    • 2
  • Cristina Oliveras-Ferraros
    • 1
    • 2
  • Sonia del Barco
    • 1
    • 2
  • Begoña Martín-Castillo
    • 1
    • 2
  • Javier A. Menéndez
    • 1
    • 2
  1. 1.Catalan Institute of Oncology (ICO)GironaSpain
  2. 2.Girona Biomedical Research Institute (IdIBGi)Dr. Josep Trueta University Hospital of GironaGironaSpain

Personalised recommendations