Clinical and Translational Oncology

, Volume 11, Issue 7, pp 428–436

Clinical-molecular factors predicting response and survival for tyrosine-kinase inhibitors

  • Mariano Provencio
  • Rosario García-Campelo
  • Dolores Isla
  • Javier de Castro
Educational Series Molecular Targets in Oncology

Abstract

The development of drugs with special mechanisms of action, such as tyrosine kinase inhibitors (TKIs), means that new clinical-molecular questions are being examined and this will help us to better select from the treatments available. In this study we review questions of survival and response to TKIs, attempting to distinguish prediction-and prognosis-related factors, at both the clinical and molecular levels. The evidence available today allows us to affirm that the benefits of TKI treatment occur regardless of the patient’s status as a smoker, his/her gender or histological sub-type. Interestingly, in a subset analysis of ever-smokers, men with squamous cell histology derived a statistically significant survival benefit from erlotinib, a population that was previously thought not to benefit. The question of who should receive TKIs is still not completely resolved. Therefore, there should be an international effort to achieve a prognostic index, as has been done for lymphomas, that combines molecular and clinical factors. Such an index would classify patients into several sub-groups, defining the likelihood of non-response to TKIs.

Keywords

Tyrosine kinase inhibitor Lung cancer EGFR Resistance Survival 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferlay J, Autier P, Boniol M et al (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 10:581–592Google Scholar
  2. 2.
    Clark GM, Zborowski DM, Culbertson JL et al (2006) Clinical utility of epidermal growth factor receptor expression for selecting patients with advanced non-small cell lung cancer for treatment with Erlotinib. J Thorac Oncol 1:837–846PubMedCrossRefGoogle Scholar
  3. 3.
    Herbst RS, Prager D, Hermann R et al (2005) TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 23:5892–5899PubMedCrossRefGoogle Scholar
  4. 4.
    Miller VA, Kris MG, Shah N et al (2004) Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to Gefitinib in advanced non-small-cell lung cancer. J Clin Oncol 22:1103–1109PubMedCrossRefGoogle Scholar
  5. 5.
    Thatcher N, Chang A, Parikh P et al (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366:1527–1537PubMedCrossRefGoogle Scholar
  6. 6.
    Centers for Disease Control and Prevention (CDC) (2005) State-specific prevalence of cigarette smoking and quitting among adults — United States, 2004. MMWR Morb Mortal Wkly Rep 54:1124–1127Google Scholar
  7. 7.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132PubMedCrossRefGoogle Scholar
  8. 8.
    Clark GM, Zborowski DM, Santabarbara P et al (2006) Smoking history and epidermal growth factor receptor expression as predictors of survival benefit from erlotinib for patients with non-small-cell lung cancer in the National Cancer Institute of Canada Clinical Trials Group BR.21. Clin Lung Cancer 7:389–394PubMedCrossRefGoogle Scholar
  9. 9.
    Subramanian J, Govindan R (2007) Lung cancer in never smoker: a review. J Clin Oncol 25:561–570PubMedCrossRefGoogle Scholar
  10. 10.
    Gazdar AF (2005) Lung cancer in never smokers: a different pathway. Am Soc Clin Oncol Educational Book, pp 619–621Google Scholar
  11. 11.
    Sonobe M, Manabe T, Wada H et al (2005) Mutations in the epidermal growth factor receptor gene are linked to smoking-independent, lung adenocarcinoma. Br J Cancer 93:355–363PubMedCrossRefGoogle Scholar
  12. 12.
    Duru T, Michels S, Fouret P et al (2005) Differential expression of biomarkers in lung adenocarcinoma: a comparative study between smokers and never-smokers. Ann Oncol 16:1906–1914CrossRefGoogle Scholar
  13. 13.
    Ahrendt SA, Decker PA, Alawi EA et al (2001) Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer 92:1525–1530PubMedCrossRefGoogle Scholar
  14. 14.
    Toyooka S, Tokumo M, Shigematsu H et al (2006) Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res 66:1371–1375PubMedCrossRefGoogle Scholar
  15. 15.
    Ruckdeschel JC, Finkelstein DM, Ettinger DS et al (1986) A randomized trial of four most active regimens for metastatic non-small cell lung cancer. J Clin Oncol 4:14–22PubMedGoogle Scholar
  16. 16.
    Ramalingam S, Sandler A (2006) Salvage therapy for advanced non-small cell lung cancer: factors influencing treatment selection. Oncologist 11:655–665PubMedCrossRefGoogle Scholar
  17. 17.
    Cagnoni P, Cristy J, McCarthy S, Clark G (2006) Survival benefit from erlotinib in NSCLC patients with good prognostic factors. ESMO Congress, abstract 795pGoogle Scholar
  18. 18.
    Perez-Carrión R, Isla D, García R et al (2006) Erlotinib as single agent in patients with advanced or metastatic non-small cell lung cancer (NSCLC) and poor performance status. ESMO Congress, abstract 799Google Scholar
  19. 19.
    Clark GM, Zborowski DM, Culbertson JL et al (2006) Clinical utility of epidermal growth factor receptor expression for selecting patients with advanced non-small cell lung cancer for treatment with Erlotinib. J Thorac Oncol 1:837–846PubMedCrossRefGoogle Scholar
  20. 20.
    Dómine M, Gúrpide LA, Rosillo F et al (2007) Erlotinib as single agent in men with advanced or metastatic NSCLC: a retrospective analysis. 12th World Conference on Lung Cancer, 2–6 September, Seoul, Korea, P3-080Google Scholar
  21. 21.
    Allan SG, Bosquee L, Franke A et al (2008) Efficacy of erlotinib in patients (pts) with advanced non-small-cell lung cancer (NSCLC) relative to clinical characteristics: subset analyses from the TRUST study. J Clin Oncol 26[May 20 Suppl]:abstr 8081Google Scholar
  22. 22.
    Isla D, Jiménez U, Valverde JJ et al (2007) Erlotinib in advanced squamous cell carcinoma of the Lung. 12th World Conference on Lung Cancer, 2–6 September, Seoul, Korea, P3-095Google Scholar
  23. 23.
    Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advancedstage non-small-cell lung cancer. J Clin Oncol. 26:3543–3551PubMedCrossRefGoogle Scholar
  24. 24.
    Pirker R, Szczesna A, von Pawel J et al (2008) FLEX: a randomized, multicenter, phase III study of cetuximab in combination with cisplatin/vinorelbine (CV) versus CV alone in the first-line treatment of patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol 26[May 20 Suppl]:abstr 3Google Scholar
  25. 25.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550PubMedCrossRefGoogle Scholar
  26. 26.
    Bailey LR, Kris M, Wolf M et al (2003) Tumor EGFR membrane staining is not clinically relevant for predicting response in patients receiving Gefitinib (’Iressa’, ZD1839) monotherapy for pretreated advanced non-small-cell lung cancer: IDEAL 1 and 2. Proc Am Assoc Cancer Res 44:1362 LB-170aGoogle Scholar
  27. 27.
    Miller VA, Zakowski M, Riely GJ et al (2006) EGFR mutation and copy number, EGFR protein expression and KRAS mutation as predictors of outcome with erlotinib in bronchioloalveolar cell carcinoma: results of a prospective phase II trial. Proc Am Soc Clin Oncol 24:324s:7003aGoogle Scholar
  28. 28.
    Villaflor VM, Buckingham L, Gale M et al (2006) EGFR mutations (muts), IHC and FISH status, and chromosome 7 gene copy number combined with pAkt expression as potential predictors of survival in non-small cell lung cancer (NSCLC) patients (pts) treated with Gefitinib (GEF). J Clin Oncol 24[Suppl]:18s:7182aGoogle Scholar
  29. 29.
    Tsao MS, Sakurada A, Cutz JC et al (2005) Erlotinib in lung cancer: molecular and clinical predictors of outcome. N Engl J Med 353:133–144PubMedCrossRefGoogle Scholar
  30. 30.
    Hirsch FR, Varella-García M, Bunn PA et al (2006) Molecular predictors of outcome with Gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol 24:5034–5042PubMedCrossRefGoogle Scholar
  31. 31.
    Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying response of non-small-cell lung cancer to Gefitinib. N Engl J Med 350:2129–2139PubMedCrossRefGoogle Scholar
  32. 32.
    Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500PubMedCrossRefGoogle Scholar
  33. 33.
    Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to Gefitinib and Erlotinib. Proc Natl Acad Sci U S A 101:13306–13311PubMedCrossRefGoogle Scholar
  34. 34.
    Mitsudomi T, Kosaka T, Yatabe Y et al (2006) Biological and clinical implications of EGFR mutations in lung cancer. Int J Clin Oncol 11:190–198PubMedCrossRefGoogle Scholar
  35. 35.
    Uramoto H, Mitsudomi T (2007) Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer? Br J Cancer 96:857–863PubMedCrossRefGoogle Scholar
  36. 36.
    Cortes-Funes H, Gomez C, Rosell R et al (2005) Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small cell lung cancer patients. Ann Oncol 16:1081–1086PubMedCrossRefGoogle Scholar
  37. 37.
    Taron M, Ichinose Y, Rosell R et al (2005) Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in Gefitinib-treated chemorefractory lung adenocarcinomas. Clin Cancer Res 11:5878–5885PubMedCrossRefGoogle Scholar
  38. 38.
    Mitsudomi T, Kosaka T, Endoh H et al (2005) Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in-patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 23:2513–2520PubMedCrossRefGoogle Scholar
  39. 39.
    Riely GJ, Pao W, Pham D et al (2006) Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 12:839–844PubMedCrossRefGoogle Scholar
  40. 40.
    Jackman DM, Yeap BY, Sequist LV et al (2006) Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. Clin Cancer Res 12:3908–3914PubMedCrossRefGoogle Scholar
  41. 41.
    Hirsch FR, Franklin WA, McCoy J et al (2006) Predicting clinical benefit from EGFR TKIs: Not all EGFR mutations are equal. J Clin Oncol 24[Suppl]:18s:7072aGoogle Scholar
  42. 42.
    Paz-Ares L, Sanchez JM, García-Velasco A et al (2006) A prospective phase II trial of Erlotinib in advanced non-small cell lung cancer (NSCLC) patients (p) with mutations in the tyrosine kinase (TK) domain of the epidermal growth factor receptor (EGFR). J Clin Oncol 24[Suppl]: 18s:7020aGoogle Scholar
  43. 43.
    Inoue A, Suzuki T, Fukuhara T et al (2006) Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 24:3340–3346PubMedCrossRefGoogle Scholar
  44. 44.
    Bell DW, Lynch TJ, Haserlat SM et al (2005) Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 23:8081–8092PubMedCrossRefGoogle Scholar
  45. 45.
    Eberhard DA, Johnson BE, Amler LC et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–5909PubMedCrossRefGoogle Scholar
  46. 46.
    Shigematsu H, Lin L, Takahashi T et al (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97:339–346PubMedGoogle Scholar
  47. 47.
    Kosaka T, Yatabe Y, Endoh H et al (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 64:8919–8923PubMedCrossRefGoogle Scholar
  48. 48.
    Cappuzzo F, Hirsch FR, Rossi E et al (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small cell lung cancer. J Natl Cancer Inst 97:643–655PubMedCrossRefGoogle Scholar
  49. 49.
    Baselga J, Arteaga CL (2005) Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23:2445–2459PubMedCrossRefGoogle Scholar
  50. 50.
    Cappuzzo F, Varella-Garcia M, Shigematsu H et al (2005) Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 23:5007–5018PubMedCrossRefGoogle Scholar
  51. 51.
    Cappuzzo F, Toschi L, Domenichini I et al (2005) HER3 genomic gain and sensitivity to Gefitinib in advanced non-small-cell lung cancer patients. Br J Cancer 93:1334–1340PubMedCrossRefGoogle Scholar
  52. 52.
    Thomson S, Buck E, Petti F et al (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65:9455–9462PubMedCrossRefGoogle Scholar
  53. 53.
    Witta SE, Gemmill RM, Hirsch FR et al (2006) Restoring e-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 66:944–950PubMedCrossRefGoogle Scholar
  54. 54.
    Shigematsu H, Takahashi T, Nomura M et al (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65:1642–1646PubMedCrossRefGoogle Scholar
  55. 55.
    Stephens P, Hunter C, Bignell G et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431:525–526PubMedCrossRefGoogle Scholar
  56. 56.
    Han SW, Kim TY, Jeon YK et al (2006) Optimization of patient selection for Gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res 15:12:2538–2544CrossRefGoogle Scholar
  57. 57.
    Marchetti A, Martella C, Felicioni L et al (2005) EGFR mutations in non-small-cell lung cancer: Analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 23:857–865PubMedCrossRefGoogle Scholar
  58. 58.
    Nelson HH, Christiani DC, Mark EJ et al (1999) Implications and prognostic value of K-ras mutation for early-stage lung cancer in women. J Natl Cancer Inst 91:2032–2038PubMedCrossRefGoogle Scholar
  59. 59.
    Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:1–11CrossRefGoogle Scholar
  60. 60.
    Zhu C, da Cunha Santos G, Ding K et al (2008) Role of Kras and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol 26:4268–4275PubMedCrossRefGoogle Scholar
  61. 61.
    Kobayashi S, Boggon TJ, Dayaram T et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792PubMedCrossRefGoogle Scholar
  62. 62.
    Toyooka S, Kiura K, Mitsudomi T (2005) EGFR mutation and response of lung cancer to gefitinib. N Engl J Med 352:2136PubMedCrossRefGoogle Scholar
  63. 63.
    Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to Gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043PubMedCrossRefGoogle Scholar
  64. 64.
    Bean J, Brennan C, Shih JY et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104:20932–20937PubMedCrossRefGoogle Scholar
  65. 65.
    Florescu M, Hasan B, Seymour L et al (2008) A clinical prognostic index for patients treated with erlotinib in National Cancer Institute of Canada Clinical Trials group study BR.21. J Thorac Oncol 3:590–598wwwPubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2009

Authors and Affiliations

  • Mariano Provencio
    • 1
  • Rosario García-Campelo
    • 2
  • Dolores Isla
    • 3
  • Javier de Castro
    • 4
  1. 1.Medical Oncology DepartmentHospital Universitario Puerta de HierroMajadahonda, MadridSpain
  2. 2.Medical Oncology DepartmentHospital Juan CanalejoLa CoruñaSpain
  3. 3.Medical Oncology DepartmentHospital Lozano BlesaZaragozaSpain
  4. 4.Medical Oncology DepartmentHospital La PazMadridSpain

Personalised recommendations