Advertisement

Clinical and Translational Oncology

, Volume 11, Issue 4, pp 199–207 | Cite as

Hedgehog signalling as a target in cancer stem cells

  • Vanessa Medina
  • Moisés B. Calvo
  • Silvia Díaz-Prado
  • Jesús Espada
Educational Series Molecular Targets in Oncology

Abstract

Hedgehog (Hh) is one of the most important signalling pathways. Together with the Wnt, TGF-β/BMP and Notch pathways, it is involved in both embryonic development and adult tissue homeostasis. This is because Hh plays a central role in the proliferative control and differentiation of both embryonic stem cells and adult stem cells. In this way, an alteration in the Hh pathway, either by misexpression of components of that pathway or by changes in the expression of other cellular components that interfere with the Hh signalling system, may trigger the development of several types of cancer. This occurs because normal stem cells or their intermediaries toward differentiated mature cells are not part of the normal proliferative/differentiation balance and begin to expand without control, triggering the generation of the so-called cancer stem cells. In this review, we will focus on the molecular aspects and the role of Hh signalling in normal tissues and in tumour development.

Keywords

Hh (Hedgehog) Smoothened (Smo) Patched (Ptc) Gli Cancer Cancer stem cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304:1755–1759PubMedCrossRefGoogle Scholar
  2. 2.
    Gunbin KV, Omelyanchuk LV, Ananko EA (2004) Two gene networks underlying the formation of the anterior-posterior and dorso-ventral wing imaginal disc compartment boundaries in Drosophila melanogaster. In: Kolchanov NA and Hofestaedt R (eds) Proceedings of the Fourth International Conference on Bioinformatics of Genome Regulation and Structure, BGRS’2004. Institute of Cytology and Genetics Press, Vol. 2, pp 56–59Google Scholar
  3. 3.
    Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354PubMedCrossRefGoogle Scholar
  4. 4.
    Taipale J, Cooper MK, Maiti T, Beachy PA (2002) Patched acts catalytically to suppress the activity of Smoothened. Nature 418:892–897PubMedCrossRefGoogle Scholar
  5. 5.
    Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452PubMedCrossRefGoogle Scholar
  6. 6.
    Pepinsky RB, Zeng C, Wen D et al (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273:14037–14045PubMedCrossRefGoogle Scholar
  7. 7.
    Porter JA, Ekker SC, Park WJ et al (1996) Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain. Cell 86:21–34PubMedCrossRefGoogle Scholar
  8. 8.
    Burke R, Nellen D, Bellotto M et al (1999) Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signalling cells. Cell 99:803–815PubMedCrossRefGoogle Scholar
  9. 9.
    Chamoun Z, Mann RK, Nellen D et al (2001) Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293:2080–2084PubMedCrossRefGoogle Scholar
  10. 10.
    Zeng X, Goetz JA, Suber LM et al (2001) A freely diffusible form of Sonic hedgehog mediates longrange signalling. Nature 411:716–720PubMedCrossRefGoogle Scholar
  11. 11.
    Dann CE, Hsieh JC, Rattner A et al (2001) Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412:86–90PubMedCrossRefGoogle Scholar
  12. 12.
    Taipale J, Chen JK, Cooper MK et al (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005–1009PubMedCrossRefGoogle Scholar
  13. 13.
    McCarthy RA, Barth JL, Chintalapudi MR et al (2002) Megalin functions as an endocytic sonic hedgehog receptor. J Biol Chem 277:25660–25667PubMedCrossRefGoogle Scholar
  14. 14.
    Rahnama F, Toftgard R, Zaphiropoulos PG (2004) Distinct roles of PTCH2 splice variants in Hedgehog signalling. Biochem J 378:325–334PubMedCrossRefGoogle Scholar
  15. 15.
    Merchant M, Vajdos FF, Ultsch M et al (2004) Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol 24:8627–8641PubMedCrossRefGoogle Scholar
  16. 16.
    Paces-Fessy M, Boucher D, Petit E et al (2004) The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J 378:353–362PubMedCrossRefGoogle Scholar
  17. 17.
    Tay SY, Ingham PW, Roy S (2005) A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development 132:625–634PubMedCrossRefGoogle Scholar
  18. 18.
    Wolff C, Roy S, Lewis KE et al (2004) Iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. Genes Dev 18:1565–1576PubMedCrossRefGoogle Scholar
  19. 19.
    Eggenschwiler JT, Espinoza E, Anderson KV (2001) Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412:194–198PubMedCrossRefGoogle Scholar
  20. 20.
    Mullor JL, Guerrero I (2000) A gain-of-function mutant of patched dissects different responses to the hedgehog gradient. Dev Biol 228:211–224PubMedCrossRefGoogle Scholar
  21. 21.
    Huangfu D, Liu A, Rakeman AS et al (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87PubMedCrossRefGoogle Scholar
  22. 22.
    Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27PubMedCrossRefGoogle Scholar
  23. 23.
    Machold R, Hayashi S, Rutlin M et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950PubMedCrossRefGoogle Scholar
  24. 24.
    Palma V, Lim DA, Dahmane N et al (2005) Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 132:335–344PubMedCrossRefGoogle Scholar
  25. 25.
    Palma V, Ruiz i Altaba A (2004) Hedgehog-GLI signalling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131:337–345PubMedCrossRefGoogle Scholar
  26. 26.
    van den Brink GR, Bleuming SA, Hardwick JC et al (2004) Indian Hedgehog is an antagonist of Wnt signalling in colonic epithelial cell differentiation. Nat Genet 36:277–282PubMedCrossRefGoogle Scholar
  27. 27.
    Mirsky R, Parmantier E, McMahon AP, Jessen KR (1999) Schwann cell-derived desert hedgehog signals nerve sheath formation. Ann N Y Acad Sci 883:196–202PubMedCrossRefGoogle Scholar
  28. 28.
    Parmantier E, Lynn B, Lawson D et al (1999) Schwann cell-derived Desert hedgehog controls the development of peripheral nerve sheaths. Neuron 23:713–724PubMedCrossRefGoogle Scholar
  29. 29.
    Pola R, Ling LE, Silver M et al (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711PubMedCrossRefGoogle Scholar
  30. 30.
    Duman-Scheel M, Weng L, Xin S, Du W (2002) Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 417:299–304PubMedCrossRefGoogle Scholar
  31. 31.
    Madison BB, Braunstein K, Kuizon E et al (2005) Epithelial hedgehog signals pattern the intestinal crypt-villus axis. Development 132:279–289PubMedCrossRefGoogle Scholar
  32. 32.
    Shaw A, Bushman W (2007) Hedgehog signalling in the prostate. J Urol 177:832–838PubMedCrossRefGoogle Scholar
  33. 33.
    Hahn H, Wicking C, Zaphiropoulous PG et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85:841–851PubMedCrossRefGoogle Scholar
  34. 34.
    Johnson RL, Rothman AL, Xie J et al (1996) Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272:1668–1671PubMedCrossRefGoogle Scholar
  35. 35.
    Dahmane N, Lee J, Robins P et al (1997) Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389:876–881PubMedCrossRefGoogle Scholar
  36. 36.
    Reifenberger J, Wolter M, Weber RG et al (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumours of the central nervous system. Cancer Res 58:1798–1803PubMedGoogle Scholar
  37. 37.
    Unden AB, Zaphiropoulos PG, Bruce K et al (1997) Human patched (PTCH) mRNA is overexpressed consistently in tumour cells of both familial and sporadic basal cell carcinoma. Cancer Res 57:2336–2340PubMedGoogle Scholar
  38. 38.
    Xie J, Murone M, Luoh SM et al (1998) Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391:90–92PubMedCrossRefGoogle Scholar
  39. 39.
    Taylor MD, Liu L, Raffel C et al (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310PubMedCrossRefGoogle Scholar
  40. 40.
    Grachtchouk M, Mo R, Yu S et al (2000) Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24:216–217PubMedCrossRefGoogle Scholar
  41. 41.
    Nilsson M, Unden AB, Krause D et al (2000) Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci U S A 97:3438–3443PubMedCrossRefGoogle Scholar
  42. 42.
    Oro AE, Higgins KM, Hu Z et al (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276:817–821PubMedCrossRefGoogle Scholar
  43. 43.
    Aszterbaum M, Epstein J, Oro A et al (1999) Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5:1285–1291PubMedCrossRefGoogle Scholar
  44. 44.
    Rubin LL, de Sauvage FJ (2006) Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 5:1026–1033PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2009

Authors and Affiliations

  • Vanessa Medina
    • 1
    • 5
  • Moisés B. Calvo
    • 2
  • Silvia Díaz-Prado
    • 2
    • 3
  • Jesús Espada
    • 4
  1. 1.Oncology Research UnitUniversity Hospital A CoruñaA CoruñaSpain
  2. 2.Biomedical Research Institute of A Coruña (INIBIC)A CoruñaSpain
  3. 3.Medicine DepartmentUniversity of A CoruñaA CoruñaSpain
  4. 4.Biomedical Research Institute “Alberto Sols”CSIC-UAMMadridSpain
  5. 5.Teresa Herrera Hospital (annex building)A CoruñaSpain

Personalised recommendations