Clinical and Translational Oncology

, Volume 10, Issue 12, pp 786–793 | Cite as

An update on the biology of cancer stem cells in breast cancer

  • José María García Bueno
  • Alberto Ocaña
  • Paola Castro-García
  • Carmen Gil Gas
  • Francisco Sánchez-Sánchez
  • Enrique Poblet
  • Rosario Serrano
  • Raúl Calero
  • Carmen Ramírez-Castillejo
Educational Series


Breast cancer stem cells are defined as cancer cells with self-renewal capacity. These cells represent a small subpopulation endowed with the ability to form new tumours when injected in nude mice. Markers of differentiation have been used to identify these cancer cells. In the case of breast cancer, CD44+/CD24− select a population with stem cell properties. The fact that these cells have self-renewal ability has suggested that this population could be responsible for new tumour formation and cancer relapse. These cells have been shown to be more resistant to chemotherapy and radiotherapy than normal cancer cells. The identification of the molecular druggable alterations responsible for the initiation and maintenance of cancer stem cells is an important goal. In this article we will review all these points with special emphasis on the possible role of new drugs designed to interact with molecular pathways of cancer stem cells.


Breast cancer Cancer Stem Cell Cancer ABC transporters Target therapies PEDF Notch Wnt Hedgehog 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  2. 2.
    Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197: 461–463PubMedCrossRefGoogle Scholar
  3. 3.
    Larochelle A, Vormoor J, Hanenberg H et al (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2:1329–1337PubMedCrossRefGoogle Scholar
  4. 4.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710PubMedCrossRefGoogle Scholar
  5. 5.
    Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266PubMedCrossRefGoogle Scholar
  6. 6.
    Temple S (2001) The development of neural stem cells. Nature 414:112–117PubMedCrossRefGoogle Scholar
  7. 7.
    Bassin RH, Plata EJ, Gerwin BI et al (1972) Isolation of a continuous epithelioid cell line, HBT-3, from a human breast carcinoma. Proc Soc Exp Biol Med 141:673–680PubMedGoogle Scholar
  8. 8.
    Whitehead RH, Bertoncello I, Webber LM, Pedersen JS (1983) A new human breast carcinoma cell line (PMC42) with stem cell characteristics. I. Morphologic characterization. J Natl Cancer Inst 70:649–661PubMedGoogle Scholar
  9. 9.
    Beier D, Hau P, Proescholdt M et al (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015PubMedCrossRefGoogle Scholar
  10. 10.
    Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163PubMedCrossRefGoogle Scholar
  11. 11.
    Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67:4807–4815PubMedCrossRefGoogle Scholar
  12. 12.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833PubMedCrossRefGoogle Scholar
  13. 13.
    Wang J, Guo LP, Chen LZ et al (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67:3716–3724PubMedCrossRefGoogle Scholar
  14. 14.
    Smith GH, Medina D (1988) A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci 90:173–183PubMedGoogle Scholar
  15. 15.
    Murphy KL, Dennis AP, Rosen JM (2000) A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J 14: 2291–2302PubMedCrossRefGoogle Scholar
  16. 16.
    Xu X, Wagner KU, Larson D et al (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43PubMedCrossRefGoogle Scholar
  17. 17.
    Al Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988CrossRefGoogle Scholar
  18. 18.
    Herman PC, Huber SL, Herrier T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323CrossRefGoogle Scholar
  19. 19.
    Weissman I (2005) Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 294:1359–1366PubMedCrossRefGoogle Scholar
  20. 20.
    Ocana A, Hortobagyi GN, Esteva FJ (2006) Concomitant versus sequential chemotherapy in the treatment of early-stage and metastatic breast cancer. Clin Breast Cancer 6:495–504PubMedCrossRefGoogle Scholar
  21. 21.
    Hamilton A, Hortobagyi G (2005) Chemotherapy: what progress in the last 5 years? J Clin Oncol 23:1760–1775PubMedCrossRefGoogle Scholar
  22. 22.
    Weinberg RA (2007) Using maths to tackle cancer. Nature 449:978–981CrossRefGoogle Scholar
  23. 23.
    Marx J (2003) Cancer research. Mutant stem cells may seed cancer. Science 301:1308–1310PubMedCrossRefGoogle Scholar
  24. 24.
    Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904PubMedCrossRefGoogle Scholar
  25. 25.
    Qian X, Shen Q, Goderie SK et al (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28: 69–80PubMedCrossRefGoogle Scholar
  26. 26.
    Setoguchi T, Taga T, Kondo T (2004) Cancer stem cells persist in many cancer cell lines. Cell Cycle 3:414–415PubMedGoogle Scholar
  27. 27.
    Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101:781–786PubMedCrossRefGoogle Scholar
  28. 28.
    Uchida N, Buck DW, He D et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725PubMedCrossRefGoogle Scholar
  29. 29.
    Toren A, Bielorai B, Jacob-Hirsch J et al (2005) CD133-positive hematopoietic stem cell “stemness” genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 23:1142–1153PubMedCrossRefGoogle Scholar
  30. 30.
    Chiba T, Kita K, Zheng YW et al (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251PubMedCrossRefGoogle Scholar
  31. 31.
    Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedCrossRefGoogle Scholar
  32. 32.
    Miki J, Furusato B, Li H et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67:3153–3161PubMedCrossRefGoogle Scholar
  33. 33.
    Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  34. 34.
    Yuan X, Curtin J, Xiong Y et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400PubMedCrossRefGoogle Scholar
  35. 35.
    Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67PubMedCrossRefGoogle Scholar
  36. 36.
    Florek M, Haase M, Marzesco AM et al (2005) Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 319:15–26PubMedCrossRefGoogle Scholar
  37. 37.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  38. 38.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedCrossRefGoogle Scholar
  39. 39.
    Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedCrossRefGoogle Scholar
  40. 40.
    Ponti D, Zaffaroni N, Capelli C, Daidone MG (2006) Breast cancer stem cells: an overview. Eur J Cancer 42:1219–1224PubMedCrossRefGoogle Scholar
  41. 41.
    Clarke RB, Spence K, Anderson E et al (2005) A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol 277:443–456PubMedCrossRefGoogle Scholar
  42. 42.
    Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284PubMedCrossRefGoogle Scholar
  43. 43.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33PubMedCrossRefGoogle Scholar
  44. 44.
    Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedCrossRefGoogle Scholar
  45. 45.
    Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746PubMedCrossRefGoogle Scholar
  46. 46.
    Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621PubMedCrossRefGoogle Scholar
  47. 47.
    Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348PubMedCrossRefGoogle Scholar
  48. 48.
    Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226PubMedCrossRefGoogle Scholar
  49. 49.
    Massague J (2007) Sorting out breast-cancer gene signatures. N Engl J Med 356:294–297PubMedCrossRefGoogle Scholar
  50. 50.
    Folkins C, Man S, Xu P et al (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564PubMedCrossRefGoogle Scholar
  51. 51.
    Chang A, Li X, Wong H (2007) Therapeutic resistance and tumor-initiation: molecular pathways involved in breast cancer stem cell self-renewal. J Clin Oncol 25:528Google Scholar
  52. 52.
    Jiffar T, Kurinna S, Suck G et al (2004) PKC alpha mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia 18:505–512PubMedCrossRefGoogle Scholar
  53. 53.
    Szakacs G, Annereau JP, Lababidi S et al (2004) Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6:129–137PubMedCrossRefGoogle Scholar
  54. 54.
    Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233PubMedCrossRefGoogle Scholar
  55. 55.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J. Natl. Cancer Inst. 98:1777–1785PubMedCrossRefGoogle Scholar
  56. 56.
    Bao S, Wu Q, McLendon RE, et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  57. 57.
    Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5:341–354PubMedCrossRefGoogle Scholar
  58. 58.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2:127–137PubMedCrossRefGoogle Scholar
  59. 59.
    Massague J, Pandiella A (1993) Membrane-anchored growth factors. Annu. Rev. Biochem. 62:515–541PubMedCrossRefGoogle Scholar
  60. 60.
    Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225PubMedCrossRefGoogle Scholar
  61. 61.
    Doetsch F, Petreanu L, Caille I, et al (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36:1021–1034PubMedCrossRefGoogle Scholar
  62. 62.
    Baselga J, Arteaga CL (2005) Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J. Clin. Oncol. 23: 2445–2459PubMedCrossRefGoogle Scholar
  63. 63.
    Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, et al (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form gliomalike growths in response to increased PDGF signaling. Neuron 51:187–199PubMedCrossRefGoogle Scholar
  64. 64.
    Shipitsin M, Campbell LL, Argani P, et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRefGoogle Scholar
  65. 65.
    Biswas S, Criswell TL, Wang SE, et al (2006) Inhibition of transforming growth factor-beta signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin. Cancer Res. 12:4142–4146PubMedCrossRefGoogle Scholar
  66. 66.
    Bruna A, Darken RS, Rojo F, et al (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160PubMedCrossRefGoogle Scholar
  67. 67.
    Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776PubMedCrossRefGoogle Scholar
  68. 68.
    Bray SJ. 2006. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7:678–689PubMedCrossRefGoogle Scholar
  69. 69.
    Sun Y, Lowther W, Kato K, et al (2005) Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-beta signaling. Oncogene 24:5365–5374PubMedCrossRefGoogle Scholar
  70. 70.
    Fan X, Matsui W, Khaki L, Stearns D, Chun J, Li YM, Eberhart CG. 2006. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66:7445–7452PubMedCrossRefGoogle Scholar
  71. 71.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850PubMedCrossRefGoogle Scholar
  72. 72.
    Liu S, Dontu G, Mantle ID, et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells 28. Cancer Res. 66:6063–6071PubMedCrossRefGoogle Scholar
  73. 73.
    Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C, et al (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat. Neurosci. 9:331–339PubMedCrossRefGoogle Scholar
  74. 74.
    Notari L, Baladron V, Aroca-Aguilar JD et al (2006) Identification of a lipase-linked cell-membrane receptor for Pigment Epithelium-derived factor (PEDF). J. Biol. Chem. en revisionGoogle Scholar
  75. 75.
    Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. Cancer 7:733–736PubMedCrossRefGoogle Scholar
  76. 76.
    Miller K (2007) A randomized phase III trial of paclitaxel versus paclitaxel plus bevacizumab as first-line therapy for locally recurrent or metastatic breast cancer: a trial coordinated by the Eastern Cooperative Oncology Group (E2100). San Antonio Breast Cancer Symposium. Abstract 3Google Scholar
  77. 77.
    Ohno-Matsui K, Morita I, Tombran-Tink J, et al (2001) Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J. Cell Physiol 189:323–333.PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2008

Authors and Affiliations

  • José María García Bueno
    • 1
    • 2
  • Alberto Ocaña
    • 1
    • 2
  • Paola Castro-García
    • 1
    • 5
  • Carmen Gil Gas
    • 1
    • 5
  • Francisco Sánchez-Sánchez
    • 4
  • Enrique Poblet
    • 1
    • 3
  • Rosario Serrano
    • 1
  • Raúl Calero
    • 1
  • Carmen Ramírez-Castillejo
    • 1
    • 5
  1. 1.Stem Cell Laboratory, Regional Centre for Biomedical ResearchUniversity of Castilla-La ManchaAlbaceteSpain
  2. 2.Unidad de OncologíaCHUAAlbaceteSpain
  3. 3.Unidad de Anatomía PatológicaCHUAAlbaceteSpain
  4. 4.Área de Genética Facultad de Medicina/CRIBAlbaceteSpain
  5. 5.Laboratorio de Células Madre/CRIBUniversidad de Castilla-La ManchaCastillaSpain

Personalised recommendations