Advertisement

In silico analysis of protein neoplastic biomarkers for cervix and uterine cancer

  • Mario A. Rodríguez-Pérez
  • Alberto Medina-Aunon
  • Sergio M. Encarnación-Guevara
  • Sofia Bernal-Silvia
  • Hugo Barrera-Saldaña
  • Juan Pablo Albar-Ramírez
Educational Series Blue Series

Abstract

Worldwide, cervical and uterine cancers are the most deadly cancers in women, with high prevalences, especially in developing countries. The Human Protein Atlas (HPA) portal was explored for proteins expressed in a tissue-or cervix and uterine cancer-specific manner. The group of proteins differentially expressed and with enhanced expression in the glandular and surface epithelial (squamous) cells retrieved from HPA were further explored using the Protein Information and Knowledge Extractor (PIKE) portal to compile biological information that is found in different databases, and repositories on the Internet. Thus, the lists of candidate proteins found in HPA, and PIKE portals may be used as a starting point for the discovery and validation of biomarkers for cervix and uterine cancer employing proteomics approaches as described in the present article.

Keywords

Cancer Differential quantitative proteomics Plasma and serum proteome 

References

  1. 1.
    Franco EL, Duarte FE, Ferenczy A (2001) Cervical cancer: epidemiology, prevention and the role of human papillomavirus infection. CMAJ 164: 1017–1025PubMedGoogle Scholar
  2. 2.
    Pillai MR, Halabi S, Mckallip A et al (1996) The presence of human papilomavirus-16/18 e6/-18 e6, p53, and bc1-2 protein in cervicovaginal smears from patients with invasive cervical cancer. Cancer Epidemiol Biomarkers Prev 5:329–335PubMedGoogle Scholar
  3. 3.
    Parkin M, Pisani P, Ferlay J (1999) Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer 80:827–841PubMedCrossRefGoogle Scholar
  4. 4.
    Valdespino-Gomez VM, Valdespino-Castillo VE (2004) Current perspectives in cervical cancer. Ginecol Obstet Mex 72:29–38.8PubMedGoogle Scholar
  5. 5.
    Palacio-Mejia LS, Rangel-Gomez G, Hernandez-Avila M, Lazcano Ponce E (2003) Cervical cancer, a disease of poverty: mortality differences between urban and rural areas in México. Salud Pub Mex 45:s315–25.9Google Scholar
  6. 6.
    Instituto Nacional de Estadística, Geografía e Información (I.N.E.G.I.) (2005) Información sobre tumores malignos. México, D.F., Febrero de 2005Google Scholar
  7. 7.
    Zur Hausen H (1976) Condylomata acuminata and human genital cancer. Cancer Res 36:794PubMedGoogle Scholar
  8. 8.
    Malik AI (2005) The role of Human Papilloma Virus (HPV) in the etiology of cervical cancer. J Park Med Assoc 55:553–558Google Scholar
  9. 9.
    Zur Hausen H (1989) Papilimaviruses in anogenital cancer as a model to understand the role of viruses in human cancer. Cancer Res 49:4677–4681PubMedGoogle Scholar
  10. 10.
    Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19PubMedCrossRefGoogle Scholar
  11. 11.
    Jung WW, Chun T, Sul D et al (2004) Strategies against human papillomavirus infection and cervical cancer. J Microbiol 42:255–266PubMedGoogle Scholar
  12. 12.
    Steenbergen RDM, Wilde JD, Wilting SM et al (2005) HPV-mediated transformation of the anogenital tract. J Clin Virol 32s:s25–s33CrossRefGoogle Scholar
  13. 13.
    De Villiers EM, Fauquet C, Broker TR et al (2004) Classification of papillomaviruses. Virology 324:17–27PubMedCrossRefGoogle Scholar
  14. 14.
    Choi YP, Kang S, Hong S et al (2005) Proteomic analysis of progressive factors in uterine cervical cancer. Proteomics 5:1481–1483PubMedCrossRefGoogle Scholar
  15. 15.
    Dillner J, Kallings I, Brihmer C et al (1996) Se ropo sitivities to human papillomavirus types 16, 18, or 33 capsids and to chlamydia trachomatis are markers of sexual behaviour. J Infect Dis 173:1394–1398PubMedGoogle Scholar
  16. 16.
    Silins I, Zhaohui W, Avall-Lundvist E et al (1999) Serological evidence for protection by human papilomavirus (HPV) type 6 infection against HPV type 16 cervical carcinogenesis. J Gen Vir 80: 2931–2936Google Scholar
  17. 17.
    Zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nature 2:342–350Google Scholar
  18. 18.
    Laara E, Day EN, Hakama M (1987) Trends in mortality from cervical cancer in the nordic countries: association with organized screening programs. Lancet 1:1247–1249PubMedGoogle Scholar
  19. 19.
    Lazcano-Ponce E, Rascón-Pacheco R, Lozano R, Velasco E (1996) Mortality from carcinoma of the uterine cervix in México: impact of screening 1980–1990. Acta Cytol 40:506–512PubMedGoogle Scholar
  20. 20.
    Lazcano-Ponce E, Alonso P, Ruiz-Moreno JÁ, Hernández-Avila M (2003) Recommendations for cervical cancer screening programs in developing countries. The need for equity and technological development. Salud Publica Mex 45:449–462Google Scholar
  21. 21.
    Lin YW, Lai HC, Lin CY et al (2006) Plasma proteomic profiling for detecting and differentiating in situ and invasive carcinomas of the uterine cervix. Int J Gynecol Cancer 16:1216–1224PubMedCrossRefGoogle Scholar
  22. 22.
    Koss LG (1993) Cervical (PAP) smear: new directions. Cancer 71:1406–1412PubMedGoogle Scholar
  23. 23.
    De la Cruz-Hernández E, Contreras-Paredes A, Lizano-Soberón M (2006) Toward cervical cancer prevention: strategies employed in the development of HPV vaccines. Rev Invest Clin 58: 586–597PubMedGoogle Scholar
  24. 24.
    Ciordia S, De los Rios V, Albar JP (2006) Contributions of advanced proteomics technologies to cancer diagnosis. Clin Transl Oncol 8:566–580PubMedCrossRefGoogle Scholar
  25. 25.
    Pyo Choi Y, Kang S, Hong S et al (2005) Proteomic analysis of progressive factors in uterine cervical cancer. Proteomics 5:1481–1483CrossRefGoogle Scholar
  26. 26.
    Calderón-González KG et al, 2007. Estandarización del análisis proteómico de queratinocitos inmortalizados con los genes E6, E7 y E6-7 del HPV-16. II Simposio Mexicano de Espectrometría de Masas. Proteómica Celular y Molecular. The city of Guanajuato, MéxicoGoogle Scholar
  27. 27.
    Checa Rojas A et al 2007. Análisis del secretoma de líneas celulares de CaCU. op cit.Google Scholar
  28. 28.
    Li H, DeSouza LV, Ghanny S et al (2007) Identification of candidate biomarker proteins released by human endometrial and cervical cancer cells using two-dimensional liquid chro ma to graphy/tandem mass spectrometry. J Proteome Res 6:2615–2622PubMedCrossRefGoogle Scholar
  29. 29.
    Monteoliva L, Albar JP (2004) Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic 3: 220–239PubMedCrossRefGoogle Scholar
  30. 30.
    Chen J, Kähne Röcken C, Götze T et al (2004) Proteome analysis of gastric cancer metastasis by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of metastasis-related proteins. J Proteome Res 3:1009–1016PubMedCrossRefGoogle Scholar
  31. 31.
    Martinez-Cedillo J (2004) Marcadores tumorales séricos: aplicación clínica. Gamo 3:76–81Google Scholar
  32. 32.
    Alaiya A, Franzen B, Auer G, Linder S (2000) Cancer proteomics: from identification of novel markers to creation of artificial learning models for tumor classification. Electrophoresis 21: 1210–1217PubMedCrossRefGoogle Scholar
  33. 33.
    Bae SM, Lee CH, Cho YL et al (2005) Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecol Oncol 99:26–35PubMedCrossRefGoogle Scholar
  34. 34.
    Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983PubMedCrossRefGoogle Scholar
  35. 35.
    Björling E, Lindskog C, Oksvold P et al (2008) A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics 7:825–844PubMedCrossRefGoogle Scholar
  36. 36.
    Yoon SH, Cho HI, Kim TG (2005) Activation of B cells using Schneider 2 cells expressing CD40 ligand for the enhancement of antigen presentation in vitro. Exp Mol Med 37:567–574PubMedGoogle Scholar

Copyright information

© Feseo 2008

Authors and Affiliations

  • Mario A. Rodríguez-Pérez
    • 1
    • 2
  • Alberto Medina-Aunon
    • 3
  • Sergio M. Encarnación-Guevara
    • 4
  • Sofia Bernal-Silvia
    • 5
  • Hugo Barrera-Saldaña
    • 5
  • Juan Pablo Albar-Ramírez
    • 3
  1. 1.Centro de Biotecnología GenómicaInstituto Politécnico NacionalCd. Reynosa, TamaulipasMéxico
  2. 2.Proteomics Facility Centro Nacional de Biotecnología CSIC-CNBUniversidad Autónoma de MadridMadridSpain
  3. 3.Unidad de Proteómica Centro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CSIC-CNB)MadridSpain
  4. 4.Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavaca, MorelosMéxico
  5. 5.Departamento de Bioquímica y Medicina Molecular de la Facultad de MedicinaUniversidad Autónoma de Nuevo LeónMonterreyMéxico

Personalised recommendations