Clinical and Translational Oncology

, Volume 9, Issue 7, pp 415–419 | Cite as

Molecular biology of rhabdomyosarcoma

  • S. Gallego Melcón
  • J. Sánchez de Toledo Codina
Educational Series


Rhabdomyosarcoma (RMS) is one of the most common extracranial solid tumours in children. Embryonal and alveolar subtypes of RMS present completely different genetic abnormalities. Embryonal RMS (eRMS) is characterised by loss of heterozygosity on the short arm of chromosome 11 (11p15.5), suggesting inactivation of a tumour-suppressor gene. In contrast, the majority (80–85%) of the alveolar RMS (aRMS) have the reciprocal chromosomal translocations ‘t(2;13)(q35;q14) or t(1;13)(p36;q14). t(2;13) appears in approximately 70% of patients with the alveolar subtype. The molecular counterpart of this translocation consists of the generation of a chimeric fusion gene involving the /PAX3/ gene located in chromosome 2 and a member of the fork-head family, /FOXO1/ (formerly /FKHR/), located in chromosome 13. A less frequent variant translocation t(1;13) involves another PAX family gene, /PAX7/, located in chromosome 1 and /FOXO1/ and is present in 10–15% of cases of the alveolar subtype in RMS. Recently, many studies focused on cancer have demonstrated the great potential of the genomic approach based on tumour expression profiles. These technologies permit the identification of new regulatory pathways. Molecular detection of minimal disease by a sensitive method could contribute to better treatment stratification in these patients. In RMS, the advances in the knowledge of the biological characteristics of the tumour are slowly translated into the clinical management of children with this tumour.

Key words

Rhabdomyosarcoma Genetic abnormalities Minimal disseminated disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    IARC (1998) International incidence of childhood cancer, 1998 (IICC-2), Vol. II. IARC Scientific Publication No. 144Google Scholar
  2. 2.
    Meyer WH, Spunt SL (2004) Soft tissue sarcomas of childhood. Cancer Treat Rev 30:269–280PubMedCrossRefGoogle Scholar
  3. 3.
    Pappo AS, Shapiro DN, Crist WM, Maurer HM (1995) Biology and therapy of pediatric rhabdomyosarcoma. J Clin Oncol 13:2123–2139PubMedGoogle Scholar
  4. 4.
    Crist WM, Anderson JR, Meza JL et al (2001) Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol 19:3091–3102PubMedGoogle Scholar
  5. 5.
    Raney RB, Anderson JR, Barr FG et al (2001) Rhabdomyosarcoma and Undifferentiated Sarcoma in the First Two Decades of Life: A Selective Review of Intergroup Rhabdomyosarcoma Study Group Experience and Rationale for Intergroup Rhabdomyosarcoma Study V. Am J Pediatr Hematol Oncol 23:215–220CrossRefGoogle Scholar
  6. 6.
    Newton WA Jr, Gehan EA, Webber BL et al (1995) Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification — an Intergroup Rhabdomyosarcoma Study. Cancer 76:1073–1085PubMedCrossRefGoogle Scholar
  7. 7.
    Scrable H, Witte D, Shimada H et al (1989) Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer 1:23–35PubMedCrossRefGoogle Scholar
  8. 8.
    Loh EWJ, Scrable HJ, Livanos E et al. Human chromosome 11 contains two different growth suppresser genes for embryonal rhabdomyosarcoma. Proc Natl Acad Sci U S A 89:1755–1759Google Scholar
  9. 9.
    Bridge JA, Liu J, Weibolt V et al (2000) Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization: an Intergroup Rhabdomyosarcoma Study. Genes Chromosome Cancer 27: 337–344CrossRefGoogle Scholar
  10. 10.
    Barr FG (1997) Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol 19:483–491PubMedCrossRefGoogle Scholar
  11. 11.
    Barr FG (2001) Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20:5736–5746PubMedCrossRefGoogle Scholar
  12. 12.
    Galili N, Davis RJ, Fredericks WJ et al (1993) Fusion of a fork head domain gene to PAX 3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230–235PubMedCrossRefGoogle Scholar
  13. 13.
    Davis RJ, D’Cruz CM, Lowell MA et al (1994) Fusion of PAX7 to the FKHR by the variant t(1;13) (p36;q14)translocation in alveolar rhabdomyosarcomas. Cancer Res 54:2869–2872PubMedGoogle Scholar
  14. 14.
    Bennicelli JL, Fredericks WJ, Wilson RB et al (1995) Wild-type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene 11: 119–130PubMedGoogle Scholar
  15. 15.
    Ludolph DC, Konieczny SF (1995) Transcription factor families: muscling in on the myogenic program. FASEB J 9:1595–1604PubMedGoogle Scholar
  16. 16.
    Scheidler S, Fredericks WJ, Rauscher FJ III (1996) The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci U S A 93:9805–9809PubMedCrossRefGoogle Scholar
  17. 17.
    Bernasconi M, Remppis A, Fredericks WJ et al (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci U S A 93: 13164–13169PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson J, Gordon A, Pritchard-Jones K et al (1999) Genes, chromosomes and rhabdomyosarcoma. Genes Chromosome Cancer 26:275–285CrossRefGoogle Scholar
  19. 19.
    Sorensen PHB, Lynch JC, Qualman SJ et al (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol 20:2672–2679PubMedCrossRefGoogle Scholar
  20. 20.
    Driman D, Thorner PS, Greenberg ML et al (1994) MYCN gene amplification in rhabdomyosarcoma. Cancer 15:2231–2237CrossRefGoogle Scholar
  21. 21.
    Forus A, Florenes VA, Maelandsmo GM et al (1993) Mapping of amplification units in the q13–14 region of chromosome 12 in human sarcomas: some amplicons do not include MDM2. Cell Growth Differ 4:1065–1070PubMedGoogle Scholar
  22. 22.
    Visser M, Sijmons C, Bras J et al (1997) Allelotype of pediatric rhabdomyosarcoma. Oncogene 15:1309–1314PubMedCrossRefGoogle Scholar
  23. 23.
    Skubitz KM, Skubitz AP (2004) Characterization of sarcomas by means of gene expression. J Lab Clin Med 144:78–91PubMedCrossRefGoogle Scholar
  24. 24.
    Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235PubMedCrossRefGoogle Scholar
  25. 25.
    West RB, van de Rijn M (2006) The role of microarray technologies in the study of soft tissue tumours. Histopathology 48:22–31PubMedCrossRefGoogle Scholar
  26. 26.
    Khan J, Wie JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679PubMedCrossRefGoogle Scholar
  27. 27.
    Baer C, Nees M, Breit S et al (2004) Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. Int J Cancer 110:687–694PubMedCrossRefGoogle Scholar
  28. 28.
    Schaaf GJ, Ruijter JM, van Ruissen F et al (2005) Full transcriptome analysis of rhabdomyosarcoma, normal, and fetal skeletal muscle: statistical comparison of multiple SAGE libraries. FASEB J 19:404–406PubMedGoogle Scholar
  29. 29.
    Romualdi C, De Pitta C, Tombolan L et al (2006) Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 7:287PubMedCrossRefGoogle Scholar
  30. 30.
    Athale U, Shurtleff S, Jenkins J et al (2001) Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatr Hematol Oncol 23:99–104PubMedCrossRefGoogle Scholar
  31. 31.
    Kelly KM, Womer RB, Barr FG (1996) Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer 78:1320–1327PubMedCrossRefGoogle Scholar
  32. 32.
    Frascella E, Rosolen A (1998) Detection of the MyoD1 transcript in rhabdomyosarcoma cell lines and tumor samples by reverse transcription polymerase chain reaction. Am J Pathol 152:577–583PubMedGoogle Scholar
  33. 33.
    Gattenloehner S, Dockhorn-Dworniczak B, Leuschner I et al (1999) A comparison of MyoD1 and fetal acetylcholine receptor expression in childhood tumors and normal tissues: implications for the molecular diagnosis of minimal disease in rhabdomyosarcomas. J Mol Diagn 1:23–31PubMedGoogle Scholar
  34. 34.
    Gallego S, Llort A, Roma J (2006) Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol 132:356–362PubMedCrossRefGoogle Scholar
  35. 35.
    Sartori F, Alaggio R, Zanazzo G et al (2006) Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer 106:1766–1775PubMedCrossRefGoogle Scholar
  36. 36.
    MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600PubMedCrossRefGoogle Scholar
  37. 37.
    McDowell HP, Meco D, Riccardi A et al (2006) Imatinib mesylate potentiates topotecan antitumor activity in rhabdomyosarcoma preclinical models. Int J Cancer 120:1141–1149CrossRefGoogle Scholar
  38. 38.
    Petricoin EF, Espina V, Araujo RP et al (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440PubMedCrossRefGoogle Scholar

Copyright information

© Feseo 2007

Authors and Affiliations

  • S. Gallego Melcón
    • 1
  • J. Sánchez de Toledo Codina
    • 1
  1. 1.Servicio de Oncología y Hematología PediátricaHospital Universitari Vall d’HebronBarcelonaSpain

Personalised recommendations