Clinical and Translational Oncology

, Volume 8, Issue 10, pp 717–728 | Cite as

Anticancer drug discovery and pharmaceutical chemistry: a history

Educational Series Red Series


There are several procedures for the chemical discovery and design of new drugs from the point of view of the pharmaceutical or medicinal chemistry. They range from classical methods to the very new ones, such as molecular modeling or high throughput screening. In this review, we will consider some historical approaches based on the screening of natural products, the chances for luck, the systematic screening of new chemical entities and serendipity. Another group comprises rational design, as in the case of metabolic pathways, conformation versus configuration and, finally, a brief description on available new targets to be carried out. In each approach, the structure of some examples of clinical interest will be shown.

Key words

drug discovery drug design organic chemistry of anticancer drugs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Humblet C, Marshall GR. Pharmacophore identification and receptor mapping. Annu Rep Med Chem. 1980;15:267–76.CrossRefGoogle Scholar
  2. 2.
    Ariens E. Drug Design. Vol 1. Academic Press, London, 1971.Google Scholar
  3. 3.
    Sneader W. Drug Discovery. A history. J Wiley, Chichester, 2005.Google Scholar
  4. 4.
    Monge A. Personal communication.Google Scholar
  5. 5.
    The most paradigmatic example in medicinal chemistry is penicillin. The availability of 6-APA by fermentation opened the new world of antibiotic β-lactamics.Google Scholar
  6. 6.
    Noble RI, Beer CT, Cutts JH. Role of chance observations in chemotherapy:Vinca rosea. Ann NY Acad Sci. 1958;76:882–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Svoboda GH, Johnson IS, Gorman M, Neuss N. Current Status of research on the alkaloids ofVinca rosea Linn. (Catharanthus roseus G. Don). J Pharm Sci. 1962;51:707–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Hatwell JL, Schrecker AW. Components of podophyllin. V. The constitution of podo-phyllotoxin, J Am Chem Soc. 1951;73:2909–16.CrossRefGoogle Scholar
  9. 9.
    Keller C, Khun M, von Wartburg A, Stähellin H. Mitosis-inhibiting natural products. 24. Synthesis and antimitotic activity of glyicosidic lignan derivatives related to podophyllotoxin. J Med Chem. 1971;14:936–40.CrossRefGoogle Scholar
  10. 10.
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT. Plant antitumor agents. 1. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor fromCamptotheca acuminata. J Am Chem Soc. 1966;88:3888–90.CrossRefGoogle Scholar
  11. 11.
    Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985;260:14873–8.PubMedGoogle Scholar
  12. 12.
    Kingsbury WD, Boehm JC, Jakas DR, et al. Synthesis of water-soluble (aminoalkyl) camptothecin analogs: inhibition of topoisomerase I and antitumor activity. J Med Chem. 1991;34:98–107.PubMedCrossRefGoogle Scholar
  13. 13.
    Sawada S, Okajima S, Aiyama R, et al. Synthesis and antitumor activity of 20(S)-camptothecin derivatives; carbamate linked, water soluble derivatives of 7-ethyl-10-hydroxycampto-thecin. Chem Phar Bull. 1991;39:1446–50.Google Scholar
  14. 14.
    Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assemblyin vitro by Taxol. Nature, 1979;277:665–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Wermuth CG. Strategies in the search for new lead compounds. In The practice of Medicinal Chemistry. Ed. GC Wermuth, Academic Press, London, 1996.Google Scholar
  16. 16.
    Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB, Traxler P. Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and highly selective PDGF receptor autophosphorilation inhibitors. Bioorg Med Chem Lett. 1996;6:1221–6.CrossRefGoogle Scholar
  17. 17.
    Gilman A, Philips FS. The biological actions and therapeutic application of β-chloro-ethyl amines and sulfides. Science. 1946;103:409–15.PubMedCrossRefGoogle Scholar
  18. 18.
    Rosemberg B, van Camp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumor agents. Nature 1969;222:385–6.CrossRefGoogle Scholar
  19. 19.
    Pizarro AM, Vivienne PM, Navarro-Ranninger, Peter J. Hydrolysis Triggers Oxidation of Trans Diamine Platinum(II) Anticancer Complex. Angew Chem Int Ed. 2003;42:539–42.CrossRefGoogle Scholar
  20. 20.
    Zee-Cheng RKY, Cheng CC. Antineoplastic agents. Structure-activity relationships study of bis(substituted aminoalkylamino) anthraquinones. J Med Chem. 1978;21:291–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Wunz TP, Dorr RT, Alberts DS, Tunget CL, Einspahr J, Milton S, Remers W. New antitumor agents containing the anthracene nucleus. J Med Chem. 1987;30:1313–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Griffiths C, Hall T, Saba Z. Preliminary trial of aminoglutetimida in breast cancer. Cancer. 1973;32:31–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Sosinski J, Thakar JH, Germain GS, Kuttesh JF, Houghton PJ. Cross-resistance to antitumor diarylsulfonylureas, and collateral sensitivity to mitochondrial toxins in a human cell line selected for resistance to the antitumor agentN-(5-indanylsulfonyl)-4-N'4-chlophenyl)urea. Mol Pharmacol. 1994;45:962–70.PubMedGoogle Scholar
  24. 24.
    Farber S, Diamond LK, Mercer RD, Sylvester RF, Wolff A. Temporari remission in acute leukemia in children produced by folic acid antagonists. New Engl J. Med. 1948;238:787–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Seeger D, Cosulich DB, Smith JM, Hulkist ME. Analogs of pterylglutamic acid III. 4-amino derivatives. J Am Chem Soc. 1949; 71:765–6.CrossRefGoogle Scholar
  26. 26.
    Elion GB, Burgi E. Hitchings. Studies on condensed pyrimidine system. IX. The synthesis of some 6-substituted purines. J Am Chem Soc. 1952;74:411–4.CrossRefGoogle Scholar
  27. 27.
    Pratt WB, Ruddon RW, Ensminger WD, Maybaum J. The anticancer Drugs. 2nd ed. Oxford University Press. New York; 1994.Google Scholar
  28. 28.
    Heidelberger C, Chaudhuri NK, Dannemberg, et al. Fluorinated Pyrimidines, a new class of tumor/inhibitory compounds. Nature. 1957;179:663–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H. Canc Res. 1998;58:685–90.Google Scholar
  30. 30.
    Carlisle CH, Crowfoot D. A determination of molecular symmetry in the α-β-diethyl-dibenzyl series. J Chem Soc. 1941. p. 6–9.Google Scholar
  31. 31.
    Braña MF, García ML, Miguel PD, Morán M. Multiresistencia a fármacos antitumor-rales. In Cancer. Ed. Barreno PG, Espinós D, Cascales M. Instituto de España. Madrid, 2003.Google Scholar
  32. 32.
    Arcamone FM, Animati F, Barbieri B, et al. Synthesis, DNA-binding properties, and antitumor activity of novel distamycin derivatives. J Med Chem. 1989; 32:774–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Feigon J, Denny WA, Leupin W, Kearns DR. Interaction of antitumor drugs with natural DNA: 1H-NMR study of binding mode and kinetics. J Med Chem. 1984;27:450–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Hsiang Y-H, Jiang JB, Liu LF. Topoisomerase II-mediated DNA cleavage by Amona-fide and its structural analogs. Mol Pharmacol. 1989;36:371–6.PubMedGoogle Scholar
  35. 35.
    Rao KE, Krowicki K, Balzarini J, De Clerq E, Newman RA, Lown JW. Novellinked antiviral and antitumor agents related to netropsin-2: Synthesis and biological evaluation. In Actualités de Chimie Thérapeutique. Ed. C. Combet-Farnoux. 1991. p. 21–42.Google Scholar
  36. 36.
    Sobell HM, Reddy BS, Bhandary KK, Jain SC, Sakore TO. Organization of DNA in chromatin Proc Nat Acad Sci USA. 1976; 73:3068–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Dancey JE, Chen HX. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nature Drug Discov. 2006;5:649–59.CrossRefGoogle Scholar

Copyright information

© FESEO 2006

Authors and Affiliations

  1. 1.Instituto Canario de Investigación del Cáncer (ICIC)MadridSpain
  2. 2.Universidad de Castilla-La ManchaSpain

Personalised recommendations