Clinical and Translational Oncology

, Volume 8, Issue 8, pp 560–565

Therapeutic opportunities and targets in childhood leukemia

  • Anthony M. Ford
  • Ángel Martínez-Ramírez
Educational Series Green Series


Childhood leukemia is a common pediatric cancer in the developed world, the disease is biologically diverse and there is much discussion as to its causal mechanisms. Acute lymphoblastic leukemia (ALL) is the most common subtype and infants with ALL have a greatly increased risk of treatment failure. There are molecular and biological properties of leukemic cells that determine treatment outcome; these can usually be attributed to distinct genetic abnormalities that alter the normal proliferative and survival signals of hematopoietic cells. Experimental evidence for the existence of leukemic stem cells (LSC) has been obtained, and it is presumed that these cells arise from mutations in normal hematopoetic stem cells or progenitor cells, and they are difficult to eradicate. LSC seem to be surprisingly different from their normal counterparts and therefore are obvious new targets for drug therapy. Therapeutic concepts using monoclonal antibodies have substantially improved response rates in patients with malignant lymphomas and are currently being evaluated in other types of cancer.

Key words

acute lymphoblastic leukemia chromosome translocations fusion genes leukemic stem cell immunotherapy monoclonal antibodies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Libura J, Slater DJ, Félix CA, Richardson C. Therapy-related acute myeloid leukemia-like MLL rearrangements are induced by etoposide in primary human CD34+ cells and remain stable after clonal expansion. Blood. 2005;105(5):2124–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Huret JL, Dessen P, Bernheim A. An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia. 2001;15:987–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER, Greaves M. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA. 1998;95(8):4584–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Ford AM, Fasching K, Panzer-Grumayer ER, Koenig M, Haas OA, Greaves MF. Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood. 2001;98(3):558–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Greaves M. In utero origins of childhood leukaemia. Early Hum Dev. 2005;81(1):123–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Armstrong SA, Golub TR, Korsmeyer SJ. MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol. 2003;40(4):268–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Armstrong SA, Kung AL, Mabon ME, et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003;3(2):173–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650–65.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith BD, Bao T, Karp JE. New concepts in the treatment of acute myeloid malignancies: selected pathways for targeted therapy. J Biol Regul Homeost Agents. 2005;19(1–2):23–32.PubMedGoogle Scholar
  10. 10.
    Stam RW, den Boer ML, Schneider P, et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood. 2005;106(7):2484–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96(1):24–33.PubMedGoogle Scholar
  12. 12.
    Kelly LM, Gilliand DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–98.PubMedCrossRefGoogle Scholar
  13. 13.
    Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 1995;92(11):4917–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Romana SP, Poirel H, Leconiat M, et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 1995;86(11):4263–9.PubMedGoogle Scholar
  15. 15.
    Wiemels JL, Cazzaniga G, Daniotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999;354(9189):1499–503.PubMedCrossRefGoogle Scholar
  16. 16.
    Mori H, Colman SM, Xiao Z, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA. 2002;99(12):8242–7.PubMedCrossRefGoogle Scholar
  17. 17.
    McLean TW, Ringold S, Neuberg D, et al. TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood. 1996;88(11):4252–8.PubMedGoogle Scholar
  18. 18.
    Fenrick R, Wang L, Nip J, et al. TEL, a putative tumor suppressor, modulates cell growth and cell morphology of rastransformed cells while repressing the transcription of stromelysin-1. Mol Cell Biol. 2000;20 (16):5828–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Guidez F, Petrie K, Ford AM, et al. Recruitment of the nuclear receptor corepressor N-CoR by the TEL moiety of the childhood leukemia-associated TEL-AML1 oncoprotein. Blood. 2000;96(7):2557–61.PubMedGoogle Scholar
  20. 20.
    Acharya MR, Sparreboom A, Venitz J, Figg WD. Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol. 2005;68(4):917–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Gore SD. Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies. Nature Clinical Practice Oncology. 2005;2:S30-S5.PubMedCrossRefGoogle Scholar
  22. 22.
    Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78.PubMedCrossRefGoogle Scholar
  23. 23.
    Loh ML & Rubnitz JE. TEL-AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol. 2002;9(4):345–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006.PubMedCrossRefGoogle Scholar
  25. 25.
    Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Oncogene. 2002;21(56):8652–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Von Bubnoff N, Manley PW, Mestan J, Sanger J, Peschel C, Duyster J. Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood. 2006;108(4):1528–33.CrossRefGoogle Scholar
  27. 27.
    Kantarjian H, Giles F, Wunderle L, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Weissman I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA. 2005;294(11):1359–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.PubMedCrossRefGoogle Scholar
  31. 31.
    Hope KJ, Jin L, Dick JE. Human acute myeloid leukemia stem cells. Arch Med Res. 2003;34(6):507–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006; Jul 16.Google Scholar
  33. 33.
    Schwarzenberg L, Mathe G. White cell transfusions: six years experience. Br J Haematol. 1969;17(6):603–4.PubMedGoogle Scholar
  34. 34.
    Powles RL, Russell J, Lister TA, et al. Immunotherapy for acute myelogenous leukaemia: a controlled clinical study 2 1/2 years after entry of the last patient. Br J Cancer. 1977;35(3):265–72.PubMedGoogle Scholar
  35. 35.
    Kolb HJ, Mittermuller J, Clemm C, et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76(12):2462–5.PubMedGoogle Scholar
  36. 36.
    Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. Blood. 2004;103(3):767–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Kolb HJ, Schattenberg A, Goldman JM, et al. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995; 86(5):2041–50.PubMedGoogle Scholar
  38. 38.
    Clark RE, Dodi IA, Hill SC, et al. Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood. 2001;98(10):2887–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Norbury LC, Clark RE, Christmas SE. b3a2 BCR-ABL fusion peptides as targets for cytotoxic T cells in chronic myeloid leukaemia. Br J Haematol. 2000;109 (3):616–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Zheng Z, Takahashi M, Aoki S, et al. Expression patterns of costimulatory molecules on cells derived from human hematological malignancies. J Exp Clin Cancer Res. 1998;17(3):251–8.PubMedGoogle Scholar
  41. 41.
    Gokbuget N, Hoelzer D. Treatment with monoclonal antibodies in acute lymphoblastic leukemia: current knowledge and future prospects. Ann Hematol. 2004; 83(4):201–5.PubMedCrossRefGoogle Scholar

Copyright information

© FESEO 2006

Authors and Affiliations

  • Anthony M. Ford
    • 1
  • Ángel Martínez-Ramírez
    • 2
  1. 1.Section of Haemato-OncologyInstitute of Cancer ResearchSuttonUK
  2. 2.Molecular Cytogenetics LaboratoryMD Anderson International EspañaMadridSpain

Personalised recommendations