Clinical and Translational Oncology

, Volume 8, Issue 7, pp 466–474

Molecular biology of malignant melanoma and other cutaneous tumors

Educational Series Blue Series

Abstract

Skin cancer is the most common cancer worldwide. Its incidence is doubling every 15–20 years likely because of an aging population, changes in behaviour towards sun exposure, and increased UV light fluency at the earth surface due to ozone depletion. In this review, we summarize the most important genetic changes contributing to the development of malignant melanoma, basal cell carcinoma and squamous cell carcinoma, the main tumor entities arising in the skin. While our understanding of the oncogenes and tumor suppressor genes involved in the development and progression of skin tumors is still fragmentary, recent advances have shown alterations affecting conserved signalling pathways that control cellular proliferation and viability. These pathways includeINK4a/Rb,ARF/p53, RAS/MAPKs, and sonic hedgehog/Gli.

Key words

skin cancer UV radiation inherited syndromes genetic alterations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krasagakis K, Tosca AD. Overview of Merkel cell carcinoma and recent advances in research. Int J Dermatol. 2003; 42: 669–76.PubMedCrossRefGoogle Scholar
  2. 2.
    Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol. 2005; 32: 191–205.PubMedCrossRefGoogle Scholar
  3. 3.
    de Snoo FA, Hayward NK. Cutaneous melanoma susceptibility and progression genes. Cancer Lett. 2005;230: 153–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Chin L. The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer. 2003: 3: 559–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Walker GJ, Hayward NK. p16INK4a and p 14ARF tumour suppressons, in melanoma: lessons from the mouse. Lancet. 2002: 359: 7–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Goldstein AM, Struewing JP, Chidambaram A, et al. Genotype-phenotype relationships in US melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 2000: 92:1006–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Sotillo R, García JF, Ortega S, et al. Inyasive melanoma in cdk4-targeted mice. Proc Nat. Acad Sci USA. 2001; 98: 13312–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Booth DR. The hedgehog signalling pathway and its role in basal cell carcinoma. Cancer Metast Rev. 1999: 18: 261–84.CrossRefGoogle Scholar
  9. 9.
    Ruiz i Altaba A, Sánchez P, Dahmane N, Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer. 2002: 2: 561–72.CrossRefGoogle Scholar
  10. 10.
    Daya-Grosjean L, Couvé-Privat S. Sonic hedgehog signalling in basal cell carcinomas. Cancer Lett. 2005: 225: 181–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Daya-Grosjean, Sarasin A. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors Mutat Res. 2005: 571: 43–56.PubMedGoogle Scholar
  12. 12.
    Mancini AJ. Skin. Pediatrics. 2004: 113: 1114–9.PubMedGoogle Scholar
  13. 13.
    Kabbarah O, Chin L Revealing the genomic heterogeneity of melanoma. Cancer Cell. 2005: 8: 439–41.PubMedCrossRefGoogle Scholar
  14. 14.
    Rubin AI, Chen EH, Ratner D. Current concepts on basal cell carcinoma. N Engl J Med. 2005: 353: 2262–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Tilli CMLJ, Van Steensel MAM, Krekels GAM, et al. Molecular eatiology and pathogenesis of basal cell carcinoma. Brit J Dermatol. 2005: 152: 1108–24.CrossRefGoogle Scholar
  16. 16.
    Gailani MR, Stahle-Backdahl M, Leffell DJ, et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 1996: 14: 79–81.CrossRefGoogle Scholar
  17. 17.
    Aszterbaum M, Epstein J, Oro A, et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblatomas in patched heterozygous knockout mice. Nat Med. 1999: 5: 1285–91.PubMedCrossRefGoogle Scholar
  18. 18.
    Green CL, Khavary PA. Targets for molecular therapy of skin cancer. Semin Cancer Biol. 2004; 14: 63–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Bäckvall H, Asplund A, Gustafsson A, et al. Genetic tumor archaeology: microdissection and genetic heterogeneity in squamous and basal cell carcinoma. Mutat Res. 2005: 571: 65–79.PubMedGoogle Scholar
  20. 20.
    Boukamp P. Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis. 2005: 10: 1657–67.CrossRefGoogle Scholar
  21. 21.
    Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature. 1994: 372: 773–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsai KY, Tsao H. The genetics of skin cancer. Am J Med Genet C 2004: 131C: 82–92.CrossRefGoogle Scholar
  23. 23.
    Brown VL, Harwood CA, Crook T, et al. p161NK4a and p14ARF tumor suppressor genes are commonly inactivated in cuataneous squamous cell carcinomas. J Invest Dermatol. 2004: 122: 1284–92.PubMedCrossRefGoogle Scholar

Copyright information

© FESEO 2006

Authors and Affiliations

  1. 1.Instituto de Investigacíones Biomédicas “Alberto Sols”CSIC-UAMMadridSpain

Personalised recommendations