Advertisement

Indian Journal of Microbiology

, Volume 59, Issue 4, pp 525–529 | Cite as

Isolation and Molecular Identification of Microsporidian Pathogen Causing Nosemosis in Muga Silkworm, Antheraea assamensis Helfer (Lepidoptera: Saturniidae)

  • G. SubrahmanyamEmail author
  • Vijaya Gowri Esvaran
  • Kangayam Muthusamy Ponnuvel
  • W. Hassan
  • M. Chutia
  • R. Das
Short communications
  • 37 Downloads

Abstract

Microsporidia are intracellular fungal parasites and they are the most common pathogens for sericulture. Microsporidian sp. can cause pebrine, a dreadful disease and lead to destructive disorder in Muga silkworm, Antheraea assamensis Helfer by vertical and horizontal transmission. This disease is the key factor obstructing the developmental progress of Muga culture in India. Nevertheless, molecular identification and characterization of pathogen associated with pebrine disease in A. assamensis is not yet established. Insect bioassay studies revealed that microsporidian infection in Muga silkworm, A. assamensis Helfer significantly reduced (P < 0.005) cocoon weight, pupal weight, shell weight and silk ratios. A new set of PCR primers suitable for amplification of small subunit ribosomal RNA (SSU-rRNA) of microsporidia infecting A. assamensis have been designed. The amplicon was cloned, sequenced and analysed. Microsporidia pathogen of wild silk moth A. assamensis has been identified at genus level as Nosema sp. AA1. Phylogeny of Nosema sp. AA1 was constructed on the basis of SSU-rRNA sequence and it has a close evolutionary relationship with microsporidian pathogens of other wild silkmoths. The arrangement and organization of the rRNA genes inferred that Nosema sp. AA1 belongs to true Nosema group and not to members of the Nosema/Vairimorpha group.

Keywords

Antheraea assamensis Helfer Microsporidia Pebrine disease Small subunit ribosomal RNA (SSU-rRNA) Molecular detection Nosema sp. AA1 

Notes

Acknowledgements

Authors are thankful to Director, CMER&TI, Lahdoigarh for valuable guidance. We thank advanced level DBT-Biotech Hub, CMER&TI for providing equipment facilities. Central Silk Board (CSB), Ministry of Textiles, Govt. of India is highly acknowledged for financial support.

Supplementary material

12088_2019_822_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1680 kb)

References

  1. 1.
    Tikader A, Vijayan K, Saratchandra B (2013) Muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae)—an overview of distribution, biology and breeding. Eur J Entamol 110:293–300.  https://doi.org/10.14411/eje.2013.096 CrossRefGoogle Scholar
  2. 2.
    Nath BS, Hassan W, Rao SN, Prakash NBV, Gupta SK, Mohanan NM, Bajpai AK (2011) Genetic diversity among microsporidian isolates from the silkworm, Bombyx mori, as revealed by randomly amplified polymorphic DNA (RAPD) markers. Acta Parasitol 56:333–338.  https://doi.org/10.2478/s11686-011-0079-x CrossRefGoogle Scholar
  3. 3.
    Wang LL, Chen KP, Zhang Z, Yao Q, Gao GT, Zhao Y (2006) Phylogenetic analysis of Nosema antheraeae (Microsporidia) isolated from Chinese Oak silkworm, Antheraea pernyi. J Eukaryot Microbiol 53:310–313.  https://doi.org/10.1111/j.1550-7408.2006.00106.x CrossRefPubMedGoogle Scholar
  4. 4.
    Wang Y, Liu W, Jiang Y, Huang L, Irfan M, Shi S, Qin L (2015) Morphological and molecular characterization of Nosema pernyi, a microsporidian parasite in Antheraea pernyi. Parasitol Res 114:3327–3336.  https://doi.org/10.1007/s00436-015-4558-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Chakrabarti S, Manna B (2006) Three new species from Nosema like isolates of three non-mulberry silkworms in Assam: light, scanning and transmission electron microscopy. J Parasit Dis 30:125–133. www.researchgate.net/publication/283147836
  6. 6.
    Hasan W, Nath BS (2015) Genetic characterisation of microsporidia infecting Indian tasar silkworm, Antheraea mylitta, using morphology and molecular tools. Folia Parasitol 62:034.  https://doi.org/10.14411/fp.2015.034 CrossRefGoogle Scholar
  7. 7.
    Undeen AH, Cockburn AF (1989) The extraction of DNA from microsporidian spores. J Invertebr Pathol 54:132–133.  https://doi.org/10.1016/0022-2011(89)90151-1 CrossRefGoogle Scholar
  8. 8.
    Huang WF, Tsai SJ, Lo CF, Soichi Y, Wang CH (2004) The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genet Biol 41:473–481.  https://doi.org/10.1016/j.fgb.2003.12.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Velide L, Rao AP (2011) Studies on the impact of microsporidiosis on tropical tasar silkworm Anthereae mylitta Drury. J Appl Biosci 44:2994–2999. http://m.elewa.org/JABS/2011/44/5.pdf
  10. 10.
    Rath SS, Prasad BC, Sinha BR (2003) Food utilization efficiency in fifth instar larvae of Antheraea mylitta (Lepidoptera: Saturniidae) infected with Nosema sp. and its effect on reproductive potential and silk production. J Invertibr Pathol 83:1–9.  https://doi.org/10.1016/S0022-2011(03)00038-7 CrossRefGoogle Scholar
  11. 11.
    Kawarabata T (2003) Biology of microsporidians infecting the silkworm, Bombyx mori, in Japan. J Insect Biotechnol Sericol 72:1–32.  https://doi.org/10.11416/jibs.72.1 CrossRefGoogle Scholar
  12. 12.
    Tsai Y, Solter LF, Wang C, Fan H, Chang C, Wang C (2009) Morphological and molecular studies of a microsporidium (Nosema sp.) isolated from the three spot grass yellow butterfly, Eurema blanda arsakia (Lepidoptera: Pieridae). J Invertebr Pathol 100:85–93.  https://doi.org/10.1016/j.jip.2008.11.006 CrossRefPubMedGoogle Scholar
  13. 13.
    Tsai SJ, Kou GH, Lo CF, Wang CH (2002) Complete sequence and structure of ribosomal RNA gene of Heterosporis anguillarum. Dis Aquat Organ 49:199–206.  https://doi.org/10.3354/dao049199 CrossRefPubMedGoogle Scholar
  14. 14.
    Ku C, Wang C, Tsai Y, Tzeng C, Wang C (2007) Phylogenetic analysis of two putative Nosema isolates from cruciferous lepidopteran pests in Taiwan. J Invertebr Pathol 95:71–76.  https://doi.org/10.1016/j.jip.2006.11.008 CrossRefPubMedGoogle Scholar
  15. 15.
    Huang W, Bocquet M, Lee K, Sung I, Jiang J, Chen Y, Wang C (2008) The comparison of rDNA spacer regions of Nosema ceranae isolates from different hosts and locations. J Invertebr Pathol 97:9–13.  https://doi.org/10.1016/j.jip.2007.07.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen D, Shen Z, Zhu F, Guan R, Hou J, Zhang J, Xu X, Tang X, Xu L (2012) Phylogenetic characterization of a microsporidium (Nosema sp. MPr) isolated from Pieris rapae. Parasitol Res 111:263–269.  https://doi.org/10.1007/s00436-012-2829-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Lloyd M, Knox CM, Thackeray SR, Hill MP, Moore SD (2017) Isolation, identification and genetic characterisation of a microsporidium isolated from Carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). Afr Entomol 25:529–533.  https://doi.org/10.4001/003.025.0529 CrossRefGoogle Scholar
  18. 18.
    Zhu F, Shen Z, Guo X, Xu X, Tao H, Tang X, Xu L (2011) A new isolate of Nosema sp. (Microsporidia, Nosematidae) from Phyllobrotica armata Baly (Coleoptera, Chrysomelidae) from China. J Invertebr Pathol 106:339–342.  https://doi.org/10.1016/j.jip.2010.10.005 CrossRefPubMedGoogle Scholar

Copyright information

© Association of Microbiologists of India 2019

Authors and Affiliations

  • G. Subrahmanyam
    • 1
    Email author
  • Vijaya Gowri Esvaran
    • 2
  • Kangayam Muthusamy Ponnuvel
    • 2
  • W. Hassan
    • 2
  • M. Chutia
    • 1
  • R. Das
    • 1
  1. 1.Central Muga Eri Research and Training Institute (CMER&TI)Central Silk Board, Ministry of Textiles, Govt. of IndiaLahdoigarah, JorhatIndia
  2. 2.Genomics Division, Seri-Biotech Research LaboratoryCentral Silk Board, Ministry of Textiles, Govt. of IndiaKodathi, BengaluruIndia

Personalised recommendations