Characterization of Skin Microbiome in Tinea Pedis
- 143 Downloads
- 1 Citations
Abstract
Tinea pedis has been associated with Trichophyton rubrum infection. However, it’s not clear whether other microbes were implicated in disease pathogenesis. The composition of microbial communities of patients with tinea pedis and healthy controls were analyzed to identify the characteristics of tinea pedis and differences associated with clinical patterns. We found that microbial community structures were different in patients with tinea pedis compared with healthy controls. Moreover, skin microbiome varied in different forms of tinea pedis. Healthy controls exhibited greater fungal diversity than patients with tinea pedis. In patients with tinea pedis, the dominant bacterial and fungal genera were Staphylococcus and Trichophyton. Compared with healthy controls, Corynebacterium tuberculostearicum was decreased and T. rubrum was increased. C. tuberculostearicum was more abundant in vesicular tinea pedis than in hyperkeratotic and interdigital tinea pedis. Interdigital tinea pedis had a higher detection rate of Corynebacterium minutissimum and T. rubrum than the other forms. These results indicated that bacterial microbes may take part in the development of tinea pedis.
Keywords
Tinea pedis Skin microbiome Bacteria Fungi DiversityNotes
Acknowledgements
The study was funded by the National Natural Science Foundation of China (81573036) (General program) and National Natural Science Foundation of China (81602744) (Youth program).
Compliance with Ethical Standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.Ianiri G, Heitman J, Scheynius A (2018) The skin commensal yeast Malassezia globosa thwarts bacterial biofilms to benefit the host. J Invest Dermatol 138:1026–1029. https://doi.org/10.1016/j.jid.2018.01.008 CrossRefPubMedGoogle Scholar
- 2.Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. https://doi.org/10.1126/science.1177486 CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Marcinkiewicz M, Majewski S (2016) The role of antimicrobial peptides in chronic inflammatory skin diseases. Postepy Dermatol Alergol 33:6–12. https://doi.org/10.5114/pdia.2015.48066 CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Aspiroz C, Toyas C, Robres P, Gilaberte Y (2016) Interaction between Pseudomonas aeruginosa and dermatophyte fungi: repercussions on the clinical course and microbiological diagnosis of tinea pedis. Actas Dermosifiliogr 107:78–81. https://doi.org/10.1016/j.adengl.2015.11.015 CrossRefPubMedGoogle Scholar
- 5.Panackal AA, Halpern EF, Watson AJ (2009) Cutaneous fungal infections in the United States: analysis of the National Ambulatory Medical Care Survey (NAMCS) and National Hospital Ambulatory Medical Care Survey (NHAMCS), 1995–2004. Int J Dermatol 48:704–712. https://doi.org/10.1111/j.1365-4632.2009.04025.x CrossRefPubMedGoogle Scholar
- 6.Sakka N, Shemer A, Barzilai A, Farhi R, Daniel R (2015) Occult tinea pedis in an Israeli population and predisposing factors for the acquisition of the disease. Int J Dermatol 54:146–149. https://doi.org/10.1111/ijd.12506 CrossRefPubMedGoogle Scholar
- 7.Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Program NIHISCCS, Kong HH, Segre JA (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370. https://doi.org/10.1038/nature12171 CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Szepietowski JC, Reich A, Garlowska E, Kulig M, Baran E (2006) Factors influencing coexistence of toenail onychomycosis with tinea pedis and other dermatomycoses: a survey of 2761 patients. Arch Dermatol 142:1279–1284. https://doi.org/10.1001/archderm.142.10.1279 CrossRefPubMedGoogle Scholar
- 9.Cai W, Lu C, Li X, Zhang J, Zhan P, Xi L, Sun J, Yu X (2016) Epidemiology of superficial fungal infections in Guangdong, Southern China: a retrospective study from 2004 to 2014. Mycopathologia 181:387–395. https://doi.org/10.1007/s11046-016-9986-6 CrossRefPubMedGoogle Scholar
- 10.Djeridane A, Djeridane Y, Ammar-Khodja A (2006) Epidemiological and aetiological study on tinea pedis and onychomycosis in Algeria. Mycoses 49:190–196. https://doi.org/10.1111/j.1439-0507.2006.01230.x CrossRefPubMedGoogle Scholar
- 11.Toukabri N, Dhieb C, El Euch D, Rouissi M, Mokni M, Sadfi-Zouaoui N (2017) Prevalence, etiology, and risk factors of tinea pedis and tinea unguium in Tunisia. Can J Infect Dis Med Microbiol 2017:6835725. https://doi.org/10.1155/2017/6835725 CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Marshall J, Leeming JP, Holland KT (1987) The cutaneous microbiology of normal human feet. J Appl Bacteriol 62:139–146. https://doi.org/10.1111/j.1365-2672.1987.tb02391.x CrossRefPubMedGoogle Scholar
- 13.Smeekens SP, Huttenhower C, Riza A, van de Veerdonk FL, Zeeuwen PL, Schalkwijk J, van der Meer JW, Xavier RJ, Netea MG, Gevers D (2014) Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J Innate Immun 6:253–262. https://doi.org/10.1159/000351912 CrossRefPubMedGoogle Scholar
- 14.Veraldi S, Esposito L, Gorani A (2018) Tinea pedis acquired in mosques? Mycoses 61:794–795. https://doi.org/10.1111/myc.12775 CrossRefPubMedGoogle Scholar
- 15.Ilkit M, Durdu M (2015) Tinea pedis: the etiology and global epidemiology of a common fungal infection. Crit Rev Microbiol 41:374–388. https://doi.org/10.3109/1040841X.2013.856853 CrossRefPubMedGoogle Scholar
- 16.Sandoval-Denis M, Sutton DA, Martin-Vicente A, Cano-Lira JF, Wiederhold N, Guarro J, Gene J (2015) Cladosporium species recovered from clinical samples in the United States. J Clin Microbiol 53:2990–3000. https://doi.org/10.1128/JCM.01482-15 CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Troccaz M, Gaia N, Beccucci S, Schrenzel J, Cayeux I, Starkenmann C, Lazarevic V (2015) Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome 3:3. https://doi.org/10.1186/s40168-014-0064-3 CrossRefPubMedPubMedCentralGoogle Scholar
- 18.James AG, Austin CJ, Cox DS, Taylor D, Calvert R (2013) Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–540. https://doi.org/10.1111/1574-6941.12054 CrossRefPubMedGoogle Scholar
- 19.Sariguzel FM, Koc AN, Yagmur G, Berk E (2014) Interdigital foot infections: corynebacterium minutissimum and agents of superficial mycoses. Braz J Microbiol 45:781–784. https://doi.org/10.1590/S1517-83822014000300003 CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Ramsey JP, Mercurio A, Holland JA, Harris RN, Minbiole KP (2015) The cutaneous bacterium Janthinobacterium lividum inhibits the growth of Trichophyton rubrum in vitro. Int J Dermatol 54:156–159. https://doi.org/10.1111/ijd.12217 CrossRefPubMedGoogle Scholar
- 21.Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x CrossRefPubMedGoogle Scholar
- 22.Wang R, Song Y, Du M, Yang E, Yu J, Wan Z, Li R (2018) Skin microbiome changes in patients with interdigital tinea pedis. Br J Dermatol 179:965–968. https://doi.org/10.1111/bjd.16706 CrossRefPubMedGoogle Scholar
- 23.Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Program NCS, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859. https://doi.org/10.1101/gr.131029.111 CrossRefPubMedPubMedCentralGoogle Scholar