Advertisement

Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis

  • Roshan Kumar
  • Utkarsh Sood
  • Vipin Gupta
  • Mona Singh
  • Joy Scaria
  • Rup LalEmail author
Review article

Abstract

A healthy gut is predominantly occupied by bacteria which play a vital role in nutrition and health. Any change in normal gut homeostasis imposes gut dysbiosis. So far, efforts have been made to mitigate the gastrointestinal symptoms using modern day probiotics. The majority of the probiotics strains used currently belong to the genera Lactobacillus, Clostridium, Bifidobacterium and Streptococcus. Recent advancements in culturomics by implementing newer techniques coupled with the use of gnotobiotic animal models provide a subtle ground to develop novel host specific probiotics therapies. In this review article, the recent advances in the development of microbe-based therapies which can now be implemented to treat a wide spectrum of diseases have been discussed. However, these probiotics are not classified as drugs and there is a lack of stringent law enforcement to protect the end users against the pseudo-probiotic products. While modern probiotics hold strong promise for the future, more rigorous regulations are needed to develop genuine probiotic products and characterize novel probiotics using the latest research and technology. This article also highlights the possibility of reducing antibiotic usage by utilizing probiotics developed using the latest concepts of syn and ecobiotics.

Keywords

Probiotics Prebiotics Synbiotics Ecobiotics Challenges Microbiota Dysbiosis 

Notes

Acknowledgements

We acknowledge Julie Nelson, Veterinary and Biomedical Sciences Department, South Dakota State University for editing and improving this article.

Compliance with Ethical Standards

Conflict of interest

None.

References

  1. 1.
    Group NHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009) The NIH human microbiome project. Genome Res 19:2317–2323.  https://doi.org/10.1101/gr.096651.109 CrossRefGoogle Scholar
  2. 2.
    Bengmark S (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42:2–7CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836.  https://doi.org/10.1042/BCJ20160510 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920.  https://doi.org/10.1126/science.1104816 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Luckey TD (1972) Introduction to intestinal microecology. Am J Clin Nutr 25:1292–1294.  https://doi.org/10.1093/ajcn/25.12.1292 CrossRefPubMedGoogle Scholar
  6. 6.
    Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533.  https://doi.org/10.1371/journal.pbio.1002533 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Timmis K, Cavicchioli R, Garcia JL, Nogales B, Chavarria M, Stein L, McGenity TJ, Webster N, Singh B, Handelsman J, de Lorenzo V, Pruzzo C, Timmis J, Martin JLR, Verstraete W, Jetten M, Danchin A, Huang W, Gilbert J, Lal R, Santos H, Lee SY, Sessitsch A, Bonfante P, Gram L, Lin RTP, Ron E, Karahan C, van der Meer JR, Artunkal S, Jahn D, Harper L (2019) The urgent need for microbiology literacy in society. Environ Microbiol.  https://doi.org/10.1111/1462-2920.14611 CrossRefPubMedGoogle Scholar
  8. 8.
    Natividad JM, Verdu EF (2013) Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res 69:42–51.  https://doi.org/10.1016/j.phrs.2012.10.007 CrossRefPubMedGoogle Scholar
  9. 9.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340.  https://doi.org/10.1194/jlr.R036012 CrossRefGoogle Scholar
  10. 10.
    Higginson J (1980) Proportion of cancers due to occupation. Prev Med 9:180–188CrossRefPubMedGoogle Scholar
  11. 11.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544.  https://doi.org/10.1126/science.aad9378 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Isolauri E (2001) Probiotics in human disease. Am J Clin Nutr 73:1142S–1146S.  https://doi.org/10.1093/ajcn/73.6.1142S CrossRefPubMedGoogle Scholar
  13. 13.
    Guyonnet D, Schlumberger A, Mhamdi L, Jakob S, Chassany O (2009) Fermented milk containing Bifidobacterium lactis DN-173 010 improves gastrointestinal well-being and digestive symptoms in women reporting minor digestive symptoms: a randomised, double-blind, parallel, controlled study. Br J Nutr 102:1654–1662.  https://doi.org/10.1017/S0007114509990882 CrossRefPubMedGoogle Scholar
  14. 14.
    Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, Baccaglini L, Mohapatra A, Mohapatra SS, Misra PR, Chaudhry R, Chen HH, Johnson JA, Morris JG, Paneth N, Gewolb IH (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548:407–412.  https://doi.org/10.1038/nature23480 CrossRefPubMedGoogle Scholar
  15. 15.
    McKean J, Naug H, Nikbakht E, Amiet B, Colson N (2017) Probiotics and subclinical psychological symptoms in healthy participants: a systematic review and meta-analysis. J Altern Complement Med 23:249–258.  https://doi.org/10.1089/acm.2016.0023 CrossRefPubMedGoogle Scholar
  16. 16.
    Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev.  https://doi.org/10.1128/mmbr.00036-17 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, Dubourg G, Durand G, Mourembou G, Guilhot E, Togo A, Bellali S, Bachar D, Cassir N, Bittar F, Delerce J, Mailhe M, Ricaboni D, Bilen M, Dangui Nieko NPM, Dia Badiane NM, Valles C, Mouelhi D, Diop K, Million M, Musso D, Abrahão J, Azhar EI, Bibi F, Yasir M, Diallo A, Sokhna C, Djossou F, Vitton V, Robert C, Rolain JM, La Scola B, Fournier P-E, Levasseur A, Raoult D (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203.  https://doi.org/10.1038/nmicrobiol.2016.203 CrossRefPubMedGoogle Scholar
  18. 18.
    Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193.  https://doi.org/10.1111/1469-0691.12023 CrossRefPubMedGoogle Scholar
  19. 19.
    Sood U, Bajaj A, Kumar R, Khurana S, Kalia VC (2018) Infection and microbiome: impact of tuberculosis on human gut microbiome of indian cohort. Indian J Microbiol 58:123–125.  https://doi.org/10.1007/s12088-018-0706-4 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R, Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X, Wang J, Yang H, Kristiansen K, Li J, Jia H, Xiao L (2019) 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 37:179–185.  https://doi.org/10.1038/s41587-018-0008-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen O, Dore J, Ehrlich SD, Meta HITC, Bork P, Wang J, Meta HITC (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841.  https://doi.org/10.1038/nbt.2942 CrossRefPubMedGoogle Scholar
  22. 22.
    Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15.  https://doi.org/10.1186/s40168-016-0160-7 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Talebi Bezmin Abadi A (2014) Helicobacter pylori: a beneficial gastric pathogen? Front Med (Lausanne) 1:26.  https://doi.org/10.3389/fmed.2014.00026 CrossRefGoogle Scholar
  24. 24.
    Conway T, Cohen PS (2015) Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr.  https://doi.org/10.1128/microbiolspec.mbp-0006-2014 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ 361:k2179.  https://doi.org/10.1136/bmj.k2179 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12:611–622.  https://doi.org/10.1016/j.chom.2012.10.012 CrossRefPubMedGoogle Scholar
  27. 27.
    Abraham BP, Quigley EMM (2017) Probiotics in inflammatory bowel disease. Gastroenterol Clin N Am 46:769–782.  https://doi.org/10.1016/j.gtc.2017.08.003 CrossRefGoogle Scholar
  28. 28.
    Schepper JD, Irwin R, Kang J, Dagenais K, Lemon T, Shinouskis A, Parameswaran N, McCabe LR (2017) Probiotics in gut-bone signaling. Adv Exp Med Biol 1033:225–247.  https://doi.org/10.1007/978-3-319-66653-2_11 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Metchnikoff E (1908) The prolongation of life: optimistic studies. G. P. Putnam’s Sons, New YorkGoogle Scholar
  30. 30.
    Markova IuM, Sheveleva SA (2014) Probiotics as functional food products: manufacture and approaches to evaluating of the effectiveness. Vopr Pitan 83:4–14PubMedGoogle Scholar
  31. 31.
    Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215CrossRefPubMedGoogle Scholar
  32. 32.
    Berner D, Viernstein H (2006) Effect of protective agents on the viability of Lactococcus lactis subjected to freeze-thawing and freeze-drying. Sci Pharm 74:137CrossRefGoogle Scholar
  33. 33.
    Begum P, Madhavi G, Rajagopal S, Viswanath B, Razak M, Venkataratnamma V (2017) Probiotics as functional foods: potential effects on human health and its impact on neurological diseases. Int J Nutr Pharmacol Neurol Dis 7:23–33.  https://doi.org/10.4103/ijnpnd.ijnpnd_90_16 CrossRefGoogle Scholar
  34. 34.
    Ranadheera CS, Vidanarachchi JK, Rocha RS, Cruz AG, Ajlouni S (2017) Probiotic delivery through fermentation: dairy vs. non-dairy beverages. Fermentation 3:67CrossRefGoogle Scholar
  35. 35.
    Yeung TW, Ucok EF, Tiani KA, McClements DJ, Sela DA (2016) Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front Microbiol 7:494.  https://doi.org/10.3389/fmicb.2016.00494 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412.  https://doi.org/10.1093/jn/125.6.1401 CrossRefPubMedGoogle Scholar
  37. 37.
    Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275.  https://doi.org/10.1079/NRR200479 CrossRefPubMedGoogle Scholar
  38. 38.
    Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, Beghini F, Bertorelli R, De Sanctis V, Bariletti I, Canto R, Clementi R, Cologna M, Crifo T, Cusumano G, Gottardi S, Innamorati C, Mase C, Postai D, Savoi D, Duranti S, Lugli GA, Mancabelli L, Turroni F, Ferrario C, Milani C, Mangifesta M, Anzalone R, Viappiani A, Yassour M, Vlamakis H, Xavier R, Collado CM, Koren O, Tateo S, Soffiati M, Pedrotti A, Ventura M, Huttenhower C, Bork P, Segata N (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145.  https://doi.org/10.1016/j.chom.2018.06.005 CrossRefPubMedGoogle Scholar
  39. 39.
    Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703.  https://doi.org/10.1016/j.chom.2015.04.004 CrossRefPubMedGoogle Scholar
  40. 40.
    Figueroa-Gonzalez I, Quijano G, Ramirez G, Cruz-Guerrero A (2011) Probiotics and prebiotics–perspectives and challenges. J Sci Food Agric 91:1341–1348.  https://doi.org/10.1002/jsfa.4367 CrossRefPubMedGoogle Scholar
  41. 41.
    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502.  https://doi.org/10.1038/nrgastro.2017.75 CrossRefPubMedGoogle Scholar
  42. 42.
    Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hijova E, Chmelarova A (2007) Short chain fatty acids and colonic health. Bratisl Lek Listy 108:354–358PubMedGoogle Scholar
  44. 44.
    Roytio H, Ouwehand AC (2014) The fermentation of polydextrose in the large intestine and its beneficial effects. Benef Microbes 5:305–313.  https://doi.org/10.3920/BM2013.0065 CrossRefPubMedGoogle Scholar
  45. 45.
    Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Leotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–S63.  https://doi.org/10.1017/S0007114510003363 CrossRefPubMedGoogle Scholar
  46. 46.
    Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243CrossRefPubMedGoogle Scholar
  47. 47.
    Basturk A, Artan R, Yilmaz A (2016) Efficacy of synbiotic, probiotic, and prebiotic treatments for irritable bowel syndrome in children: a randomized controlled trial. Turk J Gastroenterol 27:439–443.  https://doi.org/10.5152/tjg.2016.16301 CrossRefPubMedGoogle Scholar
  48. 48.
    Zamani B, Farshbaf S, Golkar HR, Bahmani F, Asemi Z (2017) Synbiotic supplementation and the effects on clinical and metabolic responses in patients with rheumatoid arthritis: a randomised, double-blind, placebo-controlled trial. Br J Nutr 117:1095–1102.  https://doi.org/10.1017/S000711451700085X CrossRefPubMedGoogle Scholar
  49. 49.
    Karamali M, Nasiri N, Taghavi Shavazi N, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, Asemi Z (2018) The effects of synbiotic supplementation on pregnancy outcomes in gestational diabetes. Probiotics Antimicrob Proteins 10:496–503.  https://doi.org/10.1007/s12602-017-9313-7 CrossRefPubMedGoogle Scholar
  50. 50.
    Nikbakht E, Khalesi S, Singh I, Williams LT, West NP, Colson N (2018) Effect of probiotics and synbiotics on blood glucose: a systematic review and meta-analysis of controlled trials. Eur J Nutr 57:95–106.  https://doi.org/10.1007/s00394-016-1300-3 CrossRefPubMedGoogle Scholar
  51. 51.
    Saez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A (2016) Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci.  https://doi.org/10.3390/ijms17060928 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Okada H, Kuhn C, Feillet H, Bach JF (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol 160:1–9.  https://doi.org/10.1111/j.1365-2249.2010.04139.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB (1978) Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75:778–782CrossRefPubMedGoogle Scholar
  54. 54.
    Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ (2016) Clostridium difficile infection. Nat Rev Dis Primers 2:16020.  https://doi.org/10.1038/nrdp.2016.20 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    https://cdifffoundation.org. Accessed 20 Apr 2019
  56. 56.
    Bagdasarian N, Rao K, Malani PN (2015) Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 313:398–408.  https://doi.org/10.1001/jama.2014.17103 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, Gorbach S, Sears P, Shue YK, Group OPTCS (2011) Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431.  https://doi.org/10.1056/nejmoa0910812 CrossRefPubMedGoogle Scholar
  58. 58.
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415.  https://doi.org/10.1056/NEJMoa1205037 CrossRefPubMedGoogle Scholar
  59. 59.
    Sofi AA, Silverman AL, Khuder S, Garborg K, Westerink JM, Nawras A (2013) Relationship of symptom duration and fecal bacteriotherapy in Clostridium difficile infection-pooled data analysis and a systematic review. Scand J Gastroenterol 48:266–273.  https://doi.org/10.3109/00365521.2012.743585 CrossRefPubMedGoogle Scholar
  60. 60.
    Kamada N, Chen GY, Inohara N, Nunez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690.  https://doi.org/10.1038/ni.2608 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Meighani A, Hart BR, Mittal C, Miller N, John A, Ramesh M (2016) Predictors of fecal transplant failure. Eur J Gastroenterol Hepatol 28:826–830.  https://doi.org/10.1097/MEG.0000000000000614 CrossRefPubMedGoogle Scholar
  62. 62.
    Vargason AM, Anselmo AC (2018) Clinical translation of microbe-based therapies: current clinical landscape and preclinical outlook. Bioeng Transl Med 3:124–137.  https://doi.org/10.1002/btm2.10093 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Khanna S, Pardi DS, Kelly CR, Kraft CS, Dhere T, Henn MR, Lombardo MJ, Vulic M, Ohsumi T, Winkler J, Pindar C, McGovern BH, Pomerantz RJ, Aunins JG, Cook DN, Hohmann EL (2016) A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 214:173–181.  https://doi.org/10.1093/infdis/jiv766 CrossRefPubMedGoogle Scholar
  64. 64.
    Plessas S, Nouska C, Karapetsas A, Kazakos S, Alexopoulos A, Mantzourani I, Chondrou P, Fournomiti M, Galanis A, Bezirtzoglou E (2017) Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from feta-type cheese. Food Chem 226:102–108.  https://doi.org/10.1016/j.foodchem.2017.01.052 CrossRefPubMedGoogle Scholar
  65. 65.
    Munoz-Quezada S, Chenoll E, Vieites JM, Genoves S, Maldonado J, Bermudez-Brito M, Gomez-Llorente C, Matencio E, Bernal MJ, Romero F, Suarez A, Ramon D, Gil A (2013) Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 109:S51–S62.  https://doi.org/10.1017/S0007114512005211 CrossRefPubMedGoogle Scholar
  66. 66.
    Papadimitriou K, Zoumpopoulou G, Foligne B, Alexandraki V, Kazou M, Pot B, Tsakalidou E (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:58.  https://doi.org/10.3389/fmicb.2015.00058 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Sood U, Gupta V, Kumar R, Lal S, Fawcett D, Rattan S, Poinern GEJ, Lal R (2019) Chicken gut microbiome and human health: past scenarios, current perspectives, and futuristic applications. Indian J Microbiol.  https://doi.org/10.1007/s12088-019-00785-2 CrossRefPubMedGoogle Scholar
  68. 68.
    Guzman-Rodriguez M, McDonald JAK, Hyde R, Allen-Vercoe E, Claud EC, Sheth PM, Petrof EO (2018) Using bioreactors to study the effects of drugs on the human microbiota. Methods 149:31–41.  https://doi.org/10.1016/j.ymeth.2018.08.003 CrossRefPubMedGoogle Scholar
  69. 69.
    Auchtung JM, Robinson CD, Britton RA (2015) Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome 3:42.  https://doi.org/10.1186/s40168-015-0106-5 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI (2014) Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med 6:220ra211.  https://doi.org/10.1126/scitranslmed.3008051 CrossRefGoogle Scholar
  71. 71.
    Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684.  https://doi.org/10.1038/ni.2640 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schaedler RW, Dubs R, Costello R (1965) Association of germfree mice with bacteria isolated from normal mice. J Exp Med 122:77–82CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, McCoy KD, Macpherson AJ (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806.  https://doi.org/10.1016/j.immuni.2011.03.021 CrossRefPubMedGoogle Scholar
  74. 74.
    Wymore Brand M, Wannemuehler MJ, Phillips GJ, Proctor A, Overstreet AM, Jergens AE, Orcutt RP, Fox JG (2015) The altered Schaedler flora: continued applications of a defined murine microbial community. ILAR J 56:169–178.  https://doi.org/10.1093/ilar/ilv012 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Shen TC, Albenberg L, Bittinger K, Chehoud C, Chen YY, Judge CA, Chau L, Ni J, Sheng M, Lin A, Wilkins BJ, Buza EL, Lewis JD, Daikhin Y, Nissim I, Yudkoff M, Bushman FD, Wu GD (2015) Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 125:2841–2850.  https://doi.org/10.1172/JCI79214 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Moghadamrad S, McCoy KD, Geuking MB, Sagesser H, Kirundi J, Macpherson AJ, De Gottardi A (2015) Attenuated portal hypertension in germ-free mice: function of bacterial flora on the development of mesenteric lymphatic and blood vessels. Hepatology 61:1685–1695.  https://doi.org/10.1002/hep.27698 CrossRefPubMedGoogle Scholar
  77. 77.
    Thomas M, Wongkuna S, Ghimire S, Kumar R, Antony L, Doerner KC, Singery A, Nelson E, Woyengo T, Chankhamhaengdecha S, Janvilisri T, Scaria J (2018) Gut microbial dynamics during conventionalization of germfree chicken. mSphere 4:e00035-19.  https://doi.org/10.1128/mSphere.00035-19 CrossRefGoogle Scholar
  78. 78.
    Probiotics in food: health and nutritional properties and guidelines for evaluation: report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Cordoba, Argentina, 1–4 October 2001 [and] report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada, 30 April–1 May 2002 (2006). FAO food and nutrition paper, 0254-4725; 85., vol Accessed from https://nla.gov.au/nla.cat-vn3788914. Food and Agriculture Organization of the United Nations, World Health Organization, Rome [Italy]
  79. 79.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514.  https://doi.org/10.1038/nrgastro.2014.66 CrossRefPubMedGoogle Scholar
  80. 80.
    Venugopalan V, Shriner KA, Wong-Beringer A (2010) Regulatory oversight and safety of probiotic use. Emerg Infect Dis 16:1661–1665.  https://doi.org/10.3201/eid1611.100574 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
  82. 82.
    de Simone C (2019) The unregulated probiotic market. Clin Gastroenterol Hepatol 17:809–817.  https://doi.org/10.1016/j.cgh.2018.01.018 CrossRefPubMedGoogle Scholar
  83. 83.
    Guslandi M (2015) Role of probiotics in Crohn’s disease and in pouchitis. J Clin Gastroenterol 49:S46–S49.  https://doi.org/10.1097/MCG.0000000000000351 CrossRefPubMedGoogle Scholar
  84. 84.
    Timmerman HM, Koning CJ, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233.  https://doi.org/10.1016/j.ijfoodmicro.2004.05.012 CrossRefPubMedGoogle Scholar
  85. 85.
    Piotrovskii VK, Veiko NN, Golovanova IV, Gus’kova TA, Polievktov MK (1987) Slow elimination of a prazosin metabolite compared to prazosin kinetics after its intravenous administration to rabbits. Biull Exp Biol Med 103:73–75CrossRefGoogle Scholar
  86. 86.
    Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD, Paraskevakos G, Leyer G (2006) Probiotic use in at-risk populations. J Am Pharm Assoc 56:680–686.  https://doi.org/10.1016/j.japh.2016.07.001 CrossRefGoogle Scholar
  87. 87.
    Bagchi T (2014) Traditional food & modern lifestyle: impact of probiotics. Indian J Med Res 140:333–335PubMedPubMedCentralGoogle Scholar
  88. 88.
  89. 89.
    Expression of concern–Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial (2010). Lancet 375:875–876.  https://doi.org/10.1016/s0140-6736(10)60360-1
  90. 90.
    Nagpal R, Kumar A, Kumar M, Behare PV, Yadav H, Jain S (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15.  https://doi.org/10.1111/j.1574-6968.2012.02593.x CrossRefPubMedGoogle Scholar
  91. 91.
    Martin IW, Tonner R, Trivedi J, Miller H, Lee R, Liang X, Rotello L, Isenbergh E, Anderson J, Perl T, Zhang SX (2017) Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotic’s use. Diagn Microbiol Infect Dis 87:286–288.  https://doi.org/10.1016/j.diagmicrobio.2016.12.004 CrossRefPubMedGoogle Scholar
  92. 92.
    Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034.  https://doi.org/10.1101/cshperspect.a000034 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gutierrez A, Zapater P, Juanola O, Sempere L, Garcia M, Laveda R, Martinez A, Scharl M, Gonzalez-Navajas JM, Such J, Wiest R, Rogler G, Frances R (2016) Gut bacterial DNA translocation is an independent risk factor of flare at short term in patients with Crohn’s disease. Am J Gastroenterol 111:529–540.  https://doi.org/10.1038/ajg.2016.8 CrossRefPubMedGoogle Scholar
  94. 94.
    Bull M, Plummer S, Marchesi J, Mahenthiralingam E (2013) The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 349:77–87.  https://doi.org/10.1111/1574-6968.12293 CrossRefPubMedGoogle Scholar
  95. 95.
    Allen AP, Clarke G, Cryan JF, Quigley EMM, Dinan TG (2017) Bifidobacterium infantis 35624 and other probiotics in the management of irritable bowel syndrome. Strain specificity, symptoms, and mechanisms. Curr Med Res Opin 33:1349–1351.  https://doi.org/10.1080/03007995.2017.1322571 CrossRefPubMedGoogle Scholar
  96. 96.
  97. 97.
    Kolacek S, Hojsak I, Berni Canani R, Guarino A, Indrio F, Orel R, Pot B, Shamir R, Szajewska H, Vandenplas Y, van Goudoever J, Weizman Z, Probiotics EWGf, Prebiotics (2017) Commercial probiotic products: a call for improved quality control. A position paper by the ESPGHAN working group for probiotics and prebiotics. J Pediatr Gastroenterol Nutr 65:117–124.  https://doi.org/10.1097/mpg.0000000000001603 CrossRefPubMedGoogle Scholar
  98. 98.
  99. 99.
    Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ (2018) Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 68:1063–1075.  https://doi.org/10.1016/j.jhep.2018.01.019 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Rao RK, Samak G (2013) Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 9:99–107CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Williams NT (2010) Probiotics. Am J Health Syst Pharm 67:449–458.  https://doi.org/10.2146/ajhp090168 CrossRefPubMedGoogle Scholar
  102. 102.
    Gezginc Y, Akyol I, Kuley E, Özogul F (2013) Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem 138:655–662.  https://doi.org/10.1016/j.foodchem.2012.10.138 CrossRefPubMedGoogle Scholar
  103. 103.
    Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol 2:86.  https://doi.org/10.3389/fcimb.2012.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Delzenne NM, Schrenzel J, François P, Cani PD (2014) Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 8:2116.  https://doi.org/10.1038/ismej.2014.45 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Zhai Q, Feng S, Arjan N, Chen W (2018) A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr.  https://doi.org/10.1080/10408398.2018.1517725 CrossRefPubMedGoogle Scholar
  106. 106.
    Hong HA, le Duc H, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835.  https://doi.org/10.1016/j.femsre.2004.12.001 CrossRefPubMedGoogle Scholar
  107. 107.
    Jiang H, Ji C, Sui J, Sa R, Wang X, Liu X, Guo TL (2017) Antibacterial and antitumor activity of Bogorol B-JX isolated from Brevibacillus laterosporus JX-5. World J Microbiol Biotechnol 33:177.  https://doi.org/10.1007/s11274-017-2337-z CrossRefPubMedGoogle Scholar
  108. 108.
    Ulsemer P, Toutounian K, Schmidt J, Karsten U, Goletz S (2012) Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Appl Environ Microbiol 78:528–535.  https://doi.org/10.1128/AEM.06641-11 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Ulsemer P, Toutounian K, Kressel G, Goletz C, Schmidt J, Karsten U, Hahn A, Goletz S (2016) Impact of oral consumption of heat-treated Bacteroides xylanisolvens DSM 23964 on the level of natural TFalpha-specific antibodies in human adults. Benef Microbes 7:485–500.  https://doi.org/10.3920/BM2015.0143 CrossRefPubMedGoogle Scholar
  110. 110.
    Ku S, Park MS, Ji GE, You HJ (2016) Review on Bifidobacterium bifidum BGN4: functionality and nutraceutical applications as a probiotic microorganism. Int J Mol Sci.  https://doi.org/10.3390/ijms17091544 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    LeBlanc JG, Chain F, Martin R, Bermudez-Humaran LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16:79.  https://doi.org/10.1186/s12934-017-0691-z CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y (2004) Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 72:2240–2247CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Yuan F, Ni H, Asche CV, Kim M, Walayat S, Ren J (2017) Efficacy of Bifidobacterium infantis 35624 in patients with irritable bowel syndrome: a meta-analysis. Curr Med Res Opin 33:1191–1197.  https://doi.org/10.1080/03007995.2017.1292230 CrossRefPubMedGoogle Scholar
  114. 114.
    Liu MY, Yang ZY, Dai WK, Huang JQ, Li YH, Zhang J, Qiu CZ, Wei C, Zhou Q, Sun X, Feng X, Li DF, Wang HP, Zheng YJ (2017) Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and beta-lactoglobulin-induced intestinal food allergy mouse models. World J Gastroenterol 23:2149–2158.  https://doi.org/10.3748/wjg.v23.i12.2149 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B (2006) Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol 6:31.  https://doi.org/10.1186/1471-230X-6-31 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Merenstein DJ, Tan TP, Molokin A, Smith KH, Roberts RF, Shara NM, Mete M, Sanders ME, Solano-Aguilar G (2015) Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study. Gut Microbes 6:66–77.  https://doi.org/10.1080/19490976.2015.1005484 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Ruiz L, Gueimonde M, Ruas-Madiedo P, Ribbera A, de los Reyes-Gavilán CG, Ventura M, Margolles A, Sánchez B (2012) Molecular clues to understand the aerotolerance phenotype of bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 78:644–650.  https://doi.org/10.1128/aem.05455-11 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Celiberto LS, Bedani R, Dejani NN, Ivo de Medeiros A, Sampaio Zuanon JA, Spolidorio LC, Tallarico Adorno MA, Amancio Varesche MB, Carrilho Galvao F, Valentini SR, Font de Valdez G, Rossi EA, Cavallini DCU (2017) Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PLoS ONE 12:e0175935.  https://doi.org/10.1371/journal.pone.0175935 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Liu J, Sun J, Wang F, Yu X, Ling Z, Li H, Zhang H, Jin J, Chen W, Pang M, Yu J, He Y, Xu J (2015) Neuroprotective Effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed Res Int 2015:412946.  https://doi.org/10.1155/2015/412946 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 8:1226.  https://doi.org/10.3389/fmicb.2017.01226 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736.  https://doi.org/10.1073/pnas.0804812105 CrossRefPubMedGoogle Scholar
  122. 122.
    Hong YF, Kim H, Kim HS, Park WJ, Kim JY, Chung DK (2016) Lactobacillus acidophilus K301 inhibits atherogenesis via induction of 24 (S), 25-epoxycholesterol-mediated ABCA1 and ABCG1 production and cholesterol efflux in macrophages. PLoS ONE 11:e0154302.  https://doi.org/10.1371/journal.pone.0154302 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Wu CH, Hsueh YH, Kuo JM, Liu SJ (2018) Characterization of a potential probiotic Lactobacillus brevis RK03 and efficient production of gamma-aminobutyric acid in batch fermentation. Int J Mol Sci.  https://doi.org/10.3390/ijms19010143 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Moro-García MA, Alonso-Arias R, Baltadjieva M, Fernández Benítez C, Fernández Barrial MA, Díaz Ruisánchez E, Alonso Santos R, Alvarez Sánchez M, Saavedra Miján J, López-Larrea C (2013) Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects. Age (Dordr) 35:1311–1326.  https://doi.org/10.1007/s11357-012-9434-6 CrossRefGoogle Scholar
  125. 125.
    Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP (2018) The Lactobacillus casei group: history and health related applications. Front Microbiol 9:2107.  https://doi.org/10.3389/fmicb.2018.02107 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Aktas B, De Wolfe TJ, Tandee K, Safdar N, Darien BJ, Steele JL (2015) The effect of Lactobacillus casei 32G on the mouse cecum microbiota and innate immune response is dose and time dependent. PLoS ONE 10:e0145784.  https://doi.org/10.1371/journal.pone.0145784 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Usman Hosono A (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 82:243–248.  https://doi.org/10.3168/jds.S0022-0302(99)75229-X CrossRefPubMedGoogle Scholar
  128. 128.
    Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M, Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64:636–643.  https://doi.org/10.1038/ejcn.2010.19 CrossRefPubMedGoogle Scholar
  129. 129.
    Hosoya T, Sakai F, Yamashita M, Shiozaki T, Endo T, Ukibe K, Uenishi H, Kadooka Y, Moriya T, Nakagawa H, Nakayama Y, Miyazaki T (2014) Lactobacillus helveticus SBT2171 inhibits lymphocyte proliferation by regulation of the JNK signaling pathway. PLoS ONE 9:e108360.  https://doi.org/10.1371/journal.pone.0108360 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Costabile A, Buttarazzi I, Kolida S, Quercia S, Baldini J, Swann JR, Brigidi P, Gibson GR (2017) An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS ONE 12:e0187964.  https://doi.org/10.1371/journal.pone.0187964 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Behera SS, Ray RC, Zdolec N (2018) Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. Biomed Res Int 2018:9361614.  https://doi.org/10.1155/2018/9361614 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Krzysciak W, Koscielniak D, Papiez M, Vyhouskaya P, Zagorska-Swiezy K, Kolodziej I, Bystrowska B, Jurczak A (2017) Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients.  https://doi.org/10.3390/nu9111242 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Neville BA, O’Toole PW (2010) Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiol 5:759–774.  https://doi.org/10.2217/fmb.10.35 CrossRefPubMedGoogle Scholar
  134. 134.
    Song AA-L, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Fact 16:55.  https://doi.org/10.1186/s12934-017-0669-x CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Abbasiliasi S, Tan JS, Bashokouh F, Ibrahim TAT, Mustafa S, Vakhshiteh F, Sivasamboo S, Ariff AB (2017) In vitro assessment of Pediococcus acidilactici Kp10 for its potential use in the food industry. BMC Microbiol 17:121.  https://doi.org/10.1186/s12866-017-1000-z CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Ogita T, Nakashima M, Morita H, Saito Y, Suzuki T, Tanabe S (2011) Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells. J Biomed Biotechnol 2011:378417.  https://doi.org/10.1155/2011/378417 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Rho MK, Kim YE, Rho HI, Kim TR, Kim YB, Sung WK, Kim TW, Kim DO, Kang H (2017) Enterococcus faecium FC-K derived from kimchi is a probiotic strain that shows anti-allergic activity. J Microbiol Biotechnol 27:1071–1077.  https://doi.org/10.4014/jmb.1611.11020 CrossRefPubMedGoogle Scholar
  138. 138.
    Vimont A, Fernandez B, Hammami R, Ababsa A, Daba H, Fliss I (2017) Bacteriocin-producing Enterococcus faecium LCW 44: a high potential probiotic candidate from raw camel milk. Front Microbiol 8:865.  https://doi.org/10.3389/fmicb.2017.00865 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Buts JP (2009) Twenty-five years of research on Saccharomyces boulardii trophic effects: updates and perspectives. Dig Dis Sci 54:15–18.  https://doi.org/10.1007/s10620-008-0322-y CrossRefPubMedGoogle Scholar
  140. 140.
    Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther 26:767–778.  https://doi.org/10.1111/j.1365-2036.2007.03442.x CrossRefPubMedGoogle Scholar
  141. 141.
    Yoon S, Yu J, McDowell A, Kim SH, You HJ, Ko G (2017) Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile. J Microbiol 55:892–899.  https://doi.org/10.1007/s12275-017-7340-4 CrossRefPubMedGoogle Scholar
  142. 142.
    Valdes-Varela L, Hernandez-Barranco AM, Ruas-Madiedo P, Gueimonde M (2016) Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front Microbiol 7:738.  https://doi.org/10.3389/fmicb.2016.00738 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Woo TD, Oka K, Takahashi M, Hojo F, Osaki T, Hanawa T, Kurata S, Yonezawa H, Kamiya S (2011) Inhibition of the cytotoxic effect of Clostridium difficile in vitro by Clostridium butyricum MIYAIRI 588 strain. J Med Microbiol 60:1617–1625.  https://doi.org/10.1099/jmm.0.033423-0 CrossRefPubMedGoogle Scholar
  144. 144.
    Banerjee P, Merkel GJ, Bhunia AK (2009) Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog 1:8.  https://doi.org/10.1186/1757-4749-1-8 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Mariam SH, Zegeye N, Aseffa A, Howe R (2017) Diffusible substances from lactic acid bacterial cultures exert strong inhibitory effects on Listeria monocytogenes and Salmonella enterica serovar enteritidis in a co-culture model. BMC Microbiol 17:35.  https://doi.org/10.1186/s12866-017-0944-3 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Garcia MT, Marinez Canamero M, Lucas R, Ben Omar N, Perez Pulido R, Galvez A (2004) Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int J Food Microbiol 90:161–170CrossRefPubMedGoogle Scholar
  147. 147.
    Kleessen B, Schwarz S, Boehm A, Fuhrmann H, Richter A, Henle T, Krueger M (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br J Nutr 98:540–549.  https://doi.org/10.1017/S0007114507730751 CrossRefPubMedGoogle Scholar
  148. 148.
    Kim M, Shin HK (1998) The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats. J Nutr 128:1731–1736.  https://doi.org/10.1093/jn/128.10.1731 CrossRefPubMedGoogle Scholar
  149. 149.
    Clare BA, Conroy RS, Spelman K (2009) The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. J Altern Complement Med 15:929–934.  https://doi.org/10.1089/acm.2008.0152 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Gonzalez-Castejon M, Visioli F, Rodriguez-Casado A (2012) Diverse biological activities of dandelion. Nutr Rev 70:534–547.  https://doi.org/10.1111/j.1753-4887.2012.00509.x CrossRefPubMedGoogle Scholar
  151. 151.
    Barszcz M, Taciak M, Skomial J (2016) The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch Anim Nutr 70:278–292.  https://doi.org/10.1080/1745039X.2016.1184368 CrossRefPubMedGoogle Scholar
  152. 152.
    Samal L, Chaturvedi VB, Saikumar G, Somvanshi R, Pattanaik AK (2015) Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. J Sci Food Agric 95:1689–1696.  https://doi.org/10.1002/jsfa.6873 CrossRefPubMedGoogle Scholar
  153. 153.
    Ning Zhang XH, Zeng Yanhua, Xiyang Wu, Peng Xichun (2013) Study on prebiotic effectiveness of neutral garlic fructan in vitro. Food Sci Hum Wellness 2:119–123.  https://doi.org/10.1016/j.fshw.2013.07.001 CrossRefGoogle Scholar
  154. 154.
    Kolida S, Tuohy K, Gibson GR (2002) Prebiotic effects of inulin and oligofructose. Br J Nutr 87:S193–S197.  https://doi.org/10.1079/BJNBJN/2002537 CrossRefPubMedGoogle Scholar
  155. 155.
    Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng GH, Hess R, Ostergren K, Haworth J, Knutson N (2003) Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J Nutr 133:468–475.  https://doi.org/10.1093/jn/133.2.468 CrossRefPubMedGoogle Scholar
  156. 156.
    Onning G, Wallmark A, Persson M, Akesson B, Elmstahl S, Oste R (1999) Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia. Ann Nutr Metab 43:301–309.  https://doi.org/10.1159/000012798 CrossRefPubMedGoogle Scholar
  157. 157.
    Othman RA, Moghadasian MH, Jones PJ (2011) Cholesterol-lowering effects of oat beta-glucan. Nutr Rev 69:299–309.  https://doi.org/10.1111/j.1753-4887.2011.00401.x CrossRefPubMedGoogle Scholar
  158. 158.
    Licht TR, Hansen M, Bergstrom A, Poulsen M, Krath BN, Markowski J, Dragsted LO, Wilcks A (2010) Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin. BMC Microbiol 10:13.  https://doi.org/10.1186/1471-2180-10-13 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Chen HL, Cheng HC, Liu YJ, Liu SY, Wu WT (2006) Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition 22:1112–1119.  https://doi.org/10.1016/j.nut.2006.08.009 CrossRefPubMedGoogle Scholar
  160. 160.
    Kaats GR, Bagchi D, Preuss HG (2015) Konjac glucomannan dietary supplementation causes significant fat loss in compliant overweight adults. J Am Coll Nutr.  https://doi.org/10.1080/07315724.2015.1009194 CrossRefPubMedGoogle Scholar
  161. 161.
    Singh KK, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: a potential source of food, feed and fiber. Crit Rev Food Sci Nutr 51:210–222.  https://doi.org/10.1080/10408390903537241 CrossRefPubMedGoogle Scholar
  162. 162.
    Kristensen M, Jensen MG, Aarestrup J, Petersen KE, Sondergaard L, Mikkelsen MS, Astrup A (2012) Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr Metab (Lond) 9:8.  https://doi.org/10.1186/1743-7075-9-8 CrossRefGoogle Scholar
  163. 163.
    Delgado GT, Tamashiro WM, Marostica Junior MR, Pastore GM (2013) Yacon (Smallanthus sonchifolius): a functional food. Plant Foods Hum Nutr 68:222–228.  https://doi.org/10.1007/s11130-013-0362-0 CrossRefPubMedGoogle Scholar
  164. 164.
    Francois IE, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Hamer H, Windey K, Welling GW, Delcour JA, Courtin CM, Verbeke K, Broekaert WF (2014) Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr 58:647–653.  https://doi.org/10.1097/MPG.0000000000000285 CrossRefPubMedGoogle Scholar

Copyright information

© Association of Microbiologists of India 2019

Authors and Affiliations

  • Roshan Kumar
    • 1
    • 2
    • 3
  • Utkarsh Sood
    • 1
    • 4
  • Vipin Gupta
    • 1
    • 4
  • Mona Singh
    • 5
  • Joy Scaria
    • 2
    • 3
  • Rup Lal
    • 1
    • 4
    Email author
  1. 1.PhiXGen Private LimitedGurugramIndia
  2. 2.Department of Veterinary and Biomedical SciencesSouth Dakota State UniversityBrookingsUSA
  3. 3.South Dakota Centre for Biologics Research and CommercializationBrookingsUSA
  4. 4.Department of ZoologyUniversity of Delhi DelhiIndia
  5. 5.Special Centre for Molecular MedicineJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations