Advertisement

Differential Expression of the apsXRS System by Antimicrobial Peptide LL-37 in Commensal and Clinical Staphylococcus epidermidis Isolates

  • Sergio Martínez-García
  • Cipriano Chávez-Cabrera
  • Erika T. Quintana
  • Rodolfo Marsch-Moreno
  • Miguel A. Ibáñez-Hernández
  • Juan Carlos Zenteno
  • Marisa Cruz-Aguilar
  • Norma Velázquez-Guadarrama
  • Gabriel Betanzos-Cabrera
  • Sandra Rodríguez-Martínez
  • Mario E. Cancino-Diaz
  • Juan C. Cancino-DiazEmail author
Original research article
  • 15 Downloads

Abstract

The three-component apsXRS system senses and responds to cationic antimicrobial peptides (CAMPs), which induces the expression of the dlt operon and the genes mprF and vrafG, modifying the surface net charge in Staphylococcus epidermidis, resulting in the repulsion of CAMPs. The apsXRS system has been only studied in the S. epidermidis 1457 strain, and there are no studies of prevalence and level of expression of apsXRS in commensal and clinical isolates. From 60 isolates, those selected from commensal healthy skin (n = 20), commensal healthy conjunctive (n = 10), and clinical ocular infection (n = 30) presented the apsX, apsR, and apsS genes in their genomes. Constitutive expression of apsX, apsR, and apsS genes was determined by RT-qPCR in all isolates. It was found that expression of apsX, apsR, and apsS was 3.3–5.9-fold higher in commensal isolates stimulated with LL-37 (15 µg/mL) than in clinical isolates. Similarly, expression of the dlt operon and the genes mprF, and vraFG was 8–10-fold higher in commensal isolates than in clinical. However, LL-37 did not increase the addition of lysine in the phospholipids of the cytoplasmic membrane in any of the isolates. Mutations in the apsS loop region, apsR, and their promoter sequence were not found. These results demonstrated that apsXRS system is essential in all isolates for its constitutive expression; however, LL-37 caused an increase of apsXRS expression in commensal isolates, suggesting that S. epidermidis isolates do not respond in the same way to the presence of LL-37.

Keywords

Staphylococcus epidermidis ApsXRS LL-37 Dlt MprF 

Notes

Acknowledgments

This work was supported by Secretaria de Investigación y Posgrado (SIP-IPN) Grant 20196630. M. Cancino-Diaz, S. Rodríguez-Martínez, and J.C. Cancino-Diaz acknowledges the COFAA-IPN and EDI-IPN and SNI-CONACyT fellowships.

Authors’ contributions

SMG and CCC performed the experiments and contributed at the same level. MR and MI performed the identification of lysyl-phosphatidylglycerol. JCZ and MCA carried out the determination of mutations. VN performed the determination of isolates with vancomycin-intermediate resistance. ETC, GBC, SRM and MECD helped with the conceiving of the study and the manuscript draft. JCCD conceived the study, purchased materials, and participated in the study’s design and coordination. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

This study was carried out in accordance with the recommendations of the ethics review board of the Escuela Nacional de Ciencias Biológicas-IPN with written informed consent from all subjects in accordance with the Declaration of Helsinki.

References

  1. 1.
    Scharschmidt TC, Fischbach MA (2013) What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech 10:1–7.  https://doi.org/10.1016/j.ddmec.2012.12.003 CrossRefGoogle Scholar
  2. 2.
    Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12:503–516.  https://doi.org/10.1038/nri3228 CrossRefGoogle Scholar
  3. 3.
    Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155.  https://doi.org/10.1038/nrmicro.2017.157 CrossRefGoogle Scholar
  4. 4.
    Lai Y, Di Nardo A, Nakatsuji T et al (2009) Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin injury. Nat Med 15:1377–1382.  https://doi.org/10.1038/nm.2062 CrossRefGoogle Scholar
  5. 5.
    Xia X, Li Z, Liu K et al (2016) Staphylococcal LTA-induced miR-143 inhibits Propionibacterium acnes-mediated inflammatory response in skin. J Investig Dermatol 136:621–630.  https://doi.org/10.1016/j.jid.2015.12.024 CrossRefGoogle Scholar
  6. 6.
    Naik S, Bouladoux N, Wilhelm C et al (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119.  https://doi.org/10.1126/science.1225152 CrossRefGoogle Scholar
  7. 7.
    Cogen AL, Yamasaki K, Sanchez KM et al (2010) Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Investig Dermatol 130:192–200.  https://doi.org/10.1038/jid.2009.243 CrossRefGoogle Scholar
  8. 8.
    Laborel-Préneron E, Bianchi P, Boralevi F et al (2015) Effects of the Staphylococcus aureus and Staphylococcus epidermidis secretomes isolated from the skin microbiota of atopic children on CD4+T cell activation. PLoS ONE 10:1–16.  https://doi.org/10.1371/journal.pone.0141067 Google Scholar
  9. 9.
    Marcinkiewicz M, Majewski S (2016) The role of antimicrobial peptides in chronic inflammatory skin diseases. Adv Dermatol Alergol 33:6–12.  https://doi.org/10.5114/pdia.2015.48066 CrossRefGoogle Scholar
  10. 10.
    Alekseyenko AV, Perez-Perez GI, De Souza A et al (2013) Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1:1–17.  https://doi.org/10.1186/2049-2618-1-31 CrossRefGoogle Scholar
  11. 11.
    Gao Z, Tseng CH, Strober BE et al (2008) Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3:1–9.  https://doi.org/10.1371/journal.pone.0002719 Google Scholar
  12. 12.
    Li M, Lai Y, Villaruz AE et al (2007) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci 104:9469–9474.  https://doi.org/10.1073/pnas.0702159104 CrossRefGoogle Scholar
  13. 13.
    Herbert S, Bera A, Nerz C et al (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3:0981–0994.  https://doi.org/10.1371/journal.ppat.0030102 CrossRefGoogle Scholar
  14. 14.
    Li M, Cha DJ, Lai Y et al (2007) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66:1136–1147.  https://doi.org/10.1111/j.1365-2958.2007.05986.x CrossRefGoogle Scholar
  15. 15.
    Howden BP, Davies JK, Johnson PDR et al (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23:99–139.  https://doi.org/10.1128/CMR.00042-09 CrossRefGoogle Scholar
  16. 16.
    Schoenfelder SMK, Lange C, Eckart M et al (2010) Success through diversity—how Staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol 300:380–386.  https://doi.org/10.1016/j.ijmm.2010.04.011 CrossRefGoogle Scholar
  17. 17.
    Conlan S, Mijares LA, Becker J et al (2012) Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol 13:1–13.  https://doi.org/10.1186/gb-2012-13-7-r64 CrossRefGoogle Scholar
  18. 18.
    Juárez-Verdayes MA, Reyes-López MÁ, Cancino-Díaz ME et al (2006) Isolation, vancomycin resistance and biofilm production of Staphylococcus epidermidis from patients with conjunctivitis, corneal ulcers, and endophthalmitis. Rev Latinoam Microbiol 48:238–246Google Scholar
  19. 19.
    Thomas JC, Vargas MR, Miragaia M et al (2007) Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol 45:616–619.  https://doi.org/10.1128/JCM.01934-06 CrossRefGoogle Scholar
  20. 20.
    Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z et al (2010) A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus. J Med Microbiol 59:1135–1139.  https://doi.org/10.1099/jmm.0.021956-0 CrossRefGoogle Scholar
  21. 21.
    Zhang K, Mcclure J, Elsayed S et al (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5026–5033.  https://doi.org/10.1128/JCM.43.10.5026 CrossRefGoogle Scholar
  22. 22.
    Christensen GD, Melton DM, Beachey EH et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006Google Scholar
  23. 23.
    Li M, Guan M, Jiang XF et al (2004) Genetic polymorphism of the accessory gene regulator (agr) locus in Staphylococcus epidermidis and its association with pathogenicity. J Med Microbiol 53:545–549.  https://doi.org/10.1099/jmm.0.05406-0 CrossRefGoogle Scholar
  24. 24.
    Staubitz P, Neumann H, Schneider T et al (2004) MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 231:67–71.  https://doi.org/10.1016/S0378-1097(03)00921-2 CrossRefGoogle Scholar
  25. 25.
    Bader MW, Sanowar S, Daley ME et al (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472.  https://doi.org/10.1016/j.cell.2005.05.030 CrossRefGoogle Scholar
  26. 26.
    Cheung AL, Bayer AS, Yeaman MR et al (2014) Site-specific mutation of the sensor kinase graS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect Immun 82:5336–5345.  https://doi.org/10.1128/IAI.02480-14 CrossRefGoogle Scholar
  27. 27.
    Chaili S, Cheung AL, Bayer AS et al (2015) The GraS sensor in Staphylococcus aureus mediates resistance to host defense peptides differing in mechanisms of action. Infect Immun 84:459–466.  https://doi.org/10.1128/IAI.01030-15 CrossRefGoogle Scholar
  28. 28.
    Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies, 1st edn. Nova Science Publisher, New York, pp 61–78Google Scholar

Copyright information

© Association of Microbiologists of India 2019

Authors and Affiliations

  • Sergio Martínez-García
    • 1
  • Cipriano Chávez-Cabrera
    • 1
  • Erika T. Quintana
    • 1
  • Rodolfo Marsch-Moreno
    • 2
  • Miguel A. Ibáñez-Hernández
    • 3
  • Juan Carlos Zenteno
    • 4
  • Marisa Cruz-Aguilar
    • 4
  • Norma Velázquez-Guadarrama
    • 5
  • Gabriel Betanzos-Cabrera
    • 6
  • Sandra Rodríguez-Martínez
    • 7
  • Mario E. Cancino-Diaz
    • 7
  • Juan C. Cancino-Diaz
    • 1
    Email author
  1. 1.Department of MicrobiologyEscuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico CityMexico
  2. 2.Department of Biotechnology and BioengineeringCinvestav-IPNMexico CityMexico
  3. 3.Department of BiochemistryEscuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico CityMexico
  4. 4.Research UnitInstituto de Oftalmología Conde de ValencianaMexico CityMexico
  5. 5.Infectology LaboratoryHospital Infantil de México Federico GómezMexico CityMexico
  6. 6.Área Académica de Nutrición and Toxicología Clínica, Instituto de Ciencias de la SaludUniversidad Autónoma del Estado de HidalgoPachucaMexico
  7. 7.Department of ImmunologyEscuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations