Indian Journal of Microbiology

, Volume 59, Issue 1, pp 13–21 | Cite as

Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm and Virulence by Active Fraction of Syzygium cumini (L.) Skeels Leaf Extract: In-Vitro and In Silico Studies

  • Kuldeep Gupta
  • Salam Pradeep Singh
  • Ajay Kumar Manhar
  • Devabrata Saikia
  • Nima D. Namsa
  • Bolin Kumar Konwar
  • Manabendra MandalEmail author
Original Research Article


Syzygium cumini L. Skeels (Myretacae family) is a native plant of the Indian subcontinent which has wide socio-economical importance and is well known for its ant diabetic activity. The present study aimed to investigate the antibiofilm activity of purified fraction (EA) from S. cumini leaf extract against P. aeruginosa and S. aureus. The EA did not show any effect on growth of P. aeruginosa and S. aureus at the concentration of 900 µg/ml. At this concentration EA showed biofilm inhibition up to 86 ± 1.19% (***P < 0.0001) and 86.40 ± 1.19% (***P < 0.0001) in P. aeruginosa and S. aureus respectively. SEM examination also confirmed the reduction in biofilm formation. Further EA also disrupted some virulence phenotypes in P. aeruginosa and S. aureus. Bioactive compounds detected by GC–MS showed their possible molecular interaction with RhlG/NADP active-site complex (PDB ID: 2B4Q), LasR-TP4 complex (PDB ID: 3JPU) and Pseudaminidase (PDB ID: 2W38) from P. aeruginosa. The in vitro biofilm inhibition, virulence factor inhibition and the mode of interaction of bioactive components in Syzygium cumini with QS proteins of bacteria reported in this study might be an affordable and effective alternative method of controlling quorum sensing/biofilm-associated infections.


Anti-biofilm Syzygium cumini Pseudomonas aeruginosa Pyocyanin Swarming motility Swimming motility 



Ethyl acetate active fraction from crude extract


Quorum sensing


Phosphate buffer saline


Optical density

P. aeruginosa

Pseudomonas aeruginosa

S. aureus

Staphylococcus aureus



The author K. Gupta acknowledges to Department of Biotechnology, Government of India for financial support (DBT-JRF, Ref. No. DBT-JRF/2011-12/315 dated 19/10/2011). The authors also express their gratitude to Botanical Survey of India (BSI), Shillong, India, to help in the identification of plant sample and SAIC Tezpur University for SEM images.

Supplementary material

12088_2018_770_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 31 kb)
12088_2018_770_MOESM2_ESM.pptx (9.6 mb)
Supplementary material 2 (PPTX 9867 kb)
12088_2018_770_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)


  1. 1.
    Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111. CrossRefGoogle Scholar
  2. 2.
    Das MC, Sandhu P, Gupta P, Rudrapaul P, De Tribedi UC (2016) Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep 22:23347. CrossRefGoogle Scholar
  3. 3.
    Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. CrossRefGoogle Scholar
  4. 4.
    Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. CrossRefGoogle Scholar
  5. 5.
    Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. CrossRefGoogle Scholar
  6. 6.
    Kalia VC (2015) Microbes: the most friendly beings? In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 1–5. Google Scholar
  7. 7.
    Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. CrossRefGoogle Scholar
  8. 8.
    Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. CrossRefGoogle Scholar
  9. 9.
    Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. CrossRefGoogle Scholar
  10. 10.
    Kalia VC (2014) In search of versatile organisms for quorum sensing inhibitors: acyl homoserine lactones (AHL) acylase and AHLlactonase. FEMS Microbiol Lett 359:143. CrossRefGoogle Scholar
  11. 11.
    Kalia VC, Kumar P, Pandian STK, Sharma P (2015) Biofouling control by quorum quenching. In: Kim SK (ed) Springer handbook of marine biotechnology (vol 15). Springer, Berlin, pp 431–440. Google Scholar
  12. 12.
    Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. CrossRefGoogle Scholar
  13. 13.
    Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and –lactonase. Open Microbiol J 5:1–13. CrossRefGoogle Scholar
  14. 14.
    Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. CrossRefGoogle Scholar
  15. 15.
    Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815. CrossRefGoogle Scholar
  16. 16.
    Hu JF, Garo E, Goering MG, Pasmore M, Yoo HD, Esser T, Sestrich J, Cremin PA, Hough GW, Perrone P, Lee YS, Le NT, O’Neil-Johnson M, Costerton JW, Eldridge GR (2006) Bacterial biofilm inhibitors from Diospyros dendo. J Nat Prod 69:118–120. CrossRefGoogle Scholar
  17. 17.
    Garo E, Eldridge GR, Goering MG, DeLancey Pulcini E, Hamilton MA, Costerton JW, James GA (2007) Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob Agents Chemother 51:1813–1817. CrossRefGoogle Scholar
  18. 18.
    Lee JH, Cho MH, Lee J (2011) 3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol 13:62–73. CrossRefGoogle Scholar
  19. 19.
    Kuzma L, Rozalski M, Walencka E, Rozalska B, Wysokinska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 14:31–35. CrossRefGoogle Scholar
  20. 20.
    Stenz L, Francois P, Fischer A, Huyghe A, Tangomo M, Her-nandez D, Cassat J, Linder P, Schrenzel J (2008) Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol Lett 287:149–155. CrossRefGoogle Scholar
  21. 21.
    Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR (2013) Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA dependent manner. Infect Immun 81:496–504. CrossRefGoogle Scholar
  22. 22.
    Sajid A, Arora G, Singhal A, Kalia VC, Singh Y (2015) Protein phosphatases of pathogenic bacteria: role in physiology and virulence. Annu Rev Microbiol 69:527–547. CrossRefGoogle Scholar
  23. 23.
    Kalia VC, Koul S, Ray S, Prakash S (2018) Targeting quorum sensing mediated Staphylococcus aureus biofilms. In: Kalia VC (ed) Biotechnological applications of quorum sensing inhibitors. Springer, Berlin, pp 23–32. CrossRefGoogle Scholar
  24. 24.
    Duraipandiyan V, Ayyanar M, Ignacimuthu S (2006) Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement Altern Med 6:35. CrossRefGoogle Scholar
  25. 25.
    Maciel MCG, Farias JC, Maluf MJ, Gomes EA, Pereira PVS, Aragão-Filho WC, Frazão JB, Costa GC, Sousa SM, Silva LA, Amaral FMM, Russo M, Guerra RNM, Nascimento FRF (2008) Syzygium jambolanum treatment improves survival in lethal sepsis induced in mice. BMC Complement Altern Med 8:1–7. CrossRefGoogle Scholar
  26. 26.
    Gopu V, Kothandapani S, Shetty PH (2015) Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog 79:61–69. CrossRefGoogle Scholar
  27. 27.
    Gupta K, Hazarika SN, Saikia D, Namsa ND, Mandal M (2014) One step green synthesis and anti-microbial and anti-biofilm properties of Psidium guajava L. leaf extract-mediated silver nanoparticles. Mater Lett 125:67–70. CrossRefGoogle Scholar
  28. 28.
    Gupta K, Barua S, Hazarika NS, Manhar AK, Nath D, Karak N, Namsa ND, Mukhopadhyay R, Kalia VC, Mandal M (2014) Green silver nanoparticles: enhanced antimicrobial and anti biofilm activity with effects on DNA replication and cell cytotoxicity. RSC Adv 4:52845–52855. CrossRefGoogle Scholar
  29. 29.
    Rahman MRT, Lou Z, Yu F, Wang P, Wang H (2017) Anti-quorum sensing and anti-biofilm activity of Amomum tsaoko (Amommum tsao-ko Crevost et Lemarie) on foodborne pathogens. Saudi J Biol Sci 24:324–330. CrossRefGoogle Scholar
  30. 30.
    Vattem DA, Mihalik K, Crixell SH, McLean RJ (2007) Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia 78:302–310. CrossRefGoogle Scholar
  31. 31.
    Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321. CrossRefGoogle Scholar
  32. 32.
    Wojnicz D, Kucharska AZ, Sokoł-Łętowska A, Kicia M, Tichaczek-Goska D (2012) Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urolo Res 40:683–697. CrossRefGoogle Scholar
  33. 33.
    Kalia VC, Kumar P (2015) The battle: quorum-sensing inhibitors versus evolution of bacterial resistance. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 385–391. Google Scholar
  34. 34.
    Kalia VC, Prakash S, Koul S, Ray S (2018) Quorum sensing and its inhibition: Biotechnological applications. In: Kalia VC (ed) Quorum sensing and its biotechnological applications. Springer, New Delhi, pp 3–16. CrossRefGoogle Scholar
  35. 35.
    Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108. CrossRefGoogle Scholar
  36. 36.
    Kalia VC, Kumar P (2015) Potential applications of quorum sensing inhibitors in diverse fields. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 359–370. Google Scholar
  37. 37.
    Kumar P, Koul S, Patel SKS, Lee JK, Kalia VC (2015) Heterologous expression of quorum sensing inhibitory genes in diverse organisms. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 343–356. Google Scholar
  38. 38.
    Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J (2008) Living on a surface: swarming and biofilm formation. Trends Microbiol 16:496–506. CrossRefGoogle Scholar
  39. 39.
    Fuente-Núñez CDL, Korolik V, Bains M, Nguyen U, Breidenstein EBM, Horsman S, Lewenza S, Burrows L, Hancock REW (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704. CrossRefGoogle Scholar
  40. 40.
    Das T, Manefield M (2012) Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE 7:e46718. CrossRefGoogle Scholar
  41. 41.
    Kahlon AK, Roy S, Sharma A (2010) Molecular docking studies to map the binding site of squalene synthase inhibitors on dehydrosqualene synthase of Staphylococcus aureus. J Biomol Struct Dyn 28:201–210. CrossRefGoogle Scholar
  42. 42.
    Soong G, Muir A, Gomez MI, Waks J, Reddy B, Planet P, Singh PK, Kaneko Y, Wolfgang MC, Hsiao YS, Tong L, Prince A (2006) Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J Clin Invest 116:2297–2305. CrossRefGoogle Scholar
  43. 43.
    Adonizio A, Kong KF, Mathee K (2008) Vattem DA, Mihalik K, Crixell SH, McLean RJ (2007) Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52:198–203. CrossRefGoogle Scholar
  44. 44.
    Kalia VC, Patel SKS, Kang YC, Lee JK (2018) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv. Google Scholar

Copyright information

© Association of Microbiologists of India 2018

Authors and Affiliations

  • Kuldeep Gupta
    • 1
  • Salam Pradeep Singh
    • 1
  • Ajay Kumar Manhar
    • 1
  • Devabrata Saikia
    • 1
  • Nima D. Namsa
    • 1
  • Bolin Kumar Konwar
    • 1
  • Manabendra Mandal
    • 1
    Email author
  1. 1.Department of Molecular Biology and BiotechnologyTezpur University (A Central University)Napaam, TezpurIndia

Personalised recommendations