Indian Journal of Microbiology

, Volume 57, Issue 2, pp 171–176 | Cite as

Dark-Fermentative Biological Hydrogen Production from Mixed Biowastes Using Defined Mixed Cultures

  • Sanjay K. S. Patel
  • Jung-Kul Lee
  • Vipin C. Kalia
Original Article


Biological hydrogen (H2) production from the biowastes is widely recognized as a suitable alternative approach to utilize low cost feed instead of costly individual sugars. In the present investigation, pure and mixed biowastes were fermented by defined sets of mixed cultures for hydrolysis and H2 production. Under batch conditions, up to 65, 67 and 70 L H2/kg total solids (2%, TS) were evolved from apple pomace (AP), onion peels (OP) and potato peels (PP) using a combination of hydrolytic mixed culture (MHC5) and mixed microbial cultures (MMC4 or MMC6), respectively. Among the different combinations of mixed biowastes including AP, OP, PP and pea-shells, the combination of OP and PP exhibited maximum H2 production of 73 and 84 L/kg TS with MMC4 and MMC6, respectively. This study suggested that H2 production can be effectively regulated by using defined sets of mixed cultures for hydrolysis and H2 production from pure and mixed biowastes as feed even under unsterile conditions.


Bacillus Biowaste Biomass hydrolysis Dark-fermentation Hydrogen Mixed microbial culture 



The authors wish to thank the Director of CSIR Institute of Genomics and Integrative Biology, Delhi, India, CSIR Project WUM (ESC0108) for providing the necessary funds, facilities and moral support. This research was also supported by KU Research Professor program of Konkuk University.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

12088_2017_643_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)


  1. 1.
    Venkata Mohan S, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Naresh AK, Sankar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Bioresour Technol 215:2–12. doi: 10.1016/j.biortech.2016.03.130 CrossRefPubMedGoogle Scholar
  2. 2.
    Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi: 10.1007/s10295-007-0300-y CrossRefPubMedGoogle Scholar
  3. 3.
    Nissila ME, Lay C-H, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolysates: a review. Biomass Bioenergy 67:145–159. doi: 10.1016/j.biombioe.2014.04.035 CrossRefGoogle Scholar
  4. 4.
    Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13. doi: 10.1016/j.renene.2014.01.013 CrossRefGoogle Scholar
  5. 5.
    Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrogen Energy 35:4962–4969. doi: 10.1016/j.ijhydene.2009.08.067 CrossRefGoogle Scholar
  6. 6.
    Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. doi: 10.1016/j.ijhydene.2012.04.045 CrossRefGoogle Scholar
  7. 7.
    Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi: 10.1007/s12088-012-0287-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Kumar P, Ray S, Kalia VC (2016) Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 200:413–419. doi: 10.1016/j.biortech.2015.10.045 CrossRefPubMedGoogle Scholar
  9. 9.
    Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. doi: 10.1016/j.ijhydene.2010.03.025 CrossRefGoogle Scholar
  10. 10.
    Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  11. 11.
    Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. doi: 10.1016/j.ijhydene.2014.07.084 CrossRefGoogle Scholar
  12. 12.
    Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  13. 13.
    Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. doi: 10.1007/s12088-016-0595-3 CrossRefPubMedGoogle Scholar
  14. 14.
    Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi: 10.1016/j.biortech.2007.11.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson K, Jiang Y, Kleerebezem R, Muyzer G, van Loosdrecht MCM (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 10:670–676. doi: 10.1021/bm8013796 CrossRefPubMedGoogle Scholar
  16. 16.
    Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi: 10.1007/s12088-014-0467-7 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang H, Wang J, Fang Z, Wang X, Bu H (2010) Enhanced bio-hydrogen production by anaerobic fermentation of apple pomace with enzyme hydrolysis. Int J Hydrogen Energy 35:8303–8309. doi: 10.1016/j.ijhydene.2009.12.012 CrossRefGoogle Scholar
  19. 19.
    Sinha P, Pandey A (2014) Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. Int J Hydrogen Energy 39:7518–7525. doi: 10.1016/j.ijhydene.2013.08.134 CrossRefGoogle Scholar
  20. 20.
    Kim D-H, Kim M-S (2013) Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour Technol 127:267–274. doi: 10.1016/j.biortech.2012.09.088 CrossRefPubMedGoogle Scholar
  21. 21.
    Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125. doi: 10.1007/s12088-016-0583-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  23. 23.
    Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach for hydrogen and polyhydroxybutyrate production. In: Microbial factories, biofuels, waste treatment: volume 1, pp 73–85. doi: 10.1007/978-81-322-2598-0_5
  24. 24.
    Ray S, Kalia VC (2017) Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoates co-polymer composition. Bioresour Technol 224:743–747. doi: 10.1016/j.biortech.2016.11.089 CrossRefPubMedGoogle Scholar
  25. 25.
    Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi: 10.1007/s12088-012-0294-7 CrossRefPubMedGoogle Scholar

Copyright information

© Association of Microbiologists of India 2017

Authors and Affiliations

  • Sanjay K. S. Patel
    • 1
    • 2
  • Jung-Kul Lee
    • 2
  • Vipin C. Kalia
    • 1
  1. 1.Microbial Biotechnology and GenomicsCSIR–Institute of Genomics and Integrative Biology (IGIB)DelhiIndia
  2. 2.Department of Chemical EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations