Advertisement

Indian Journal of Microbiology

, Volume 56, Issue 4, pp 394–404 | Cite as

High Throughput Sequencing: An Overview of Sequencing Chemistry

  • Sheetal Ambardar
  • Rikita Gupta
  • Deepika Trakroo
  • Rup Lal
  • Jyoti VakhluEmail author
Review Article

Abstract

In the present century sequencing is to the DNA science, what gel electrophoresis was to it in the last century. From 1977 to 2016 three generation of the sequencing technologies of various types have been developed. Second and third generation sequencing technologies referred commonly to as next generation sequencing technology, has evolved significantly with increase in sequencing speed, decrease in sequencing cost, since its inception in 2004. GS FLX by 454 Life Sciences/Roche diagnostics, Genome Analyzer, HiSeq, MiSeq and NextSeq by Illumina, Inc., SOLiD by ABI, Ion Torrent by Life Technologies are various type of the sequencing platforms available for second generation sequencing. The platforms available for the third generation sequencing are Helicos™ Genetic Analysis System by SeqLL, LLC, SMRT Sequencing by Pacific Biosciences, Nanopore sequencing by Oxford Nanopore’s, Complete Genomics by Beijing Genomics Institute and GnuBIO by BioRad, to name few. The present article is an overview of the principle and the sequencing chemistry of these high throughput sequencing technologies along with brief comparison of various types of sequencing platforms available.

Keywords

Sequencing platforms Second generation sequencing Third generation sequencing High throughput sequencing NGS 

Notes

Acknowledgments

Authors are thankful to DBT (BT/PR5534/PBD/16/1006/2012), UGC (42-168/2013(SR)) and ICAR-NBAIM (NBAIM/AMAAS/2014-15/81) for funding of various projects. SA and RG are thankful to UGC-CSIR for NET Fellowship.

References

  1. 1.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. PNAS 74:5463–5467. doi: 10.1073/pnas.74.12.5463 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Maxam AM, Gilbert W (1977) A new method for sequencing DNA. PNAS 74:560–564. doi: 10.1073/pnas.74.2.560 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and IlluminaMiSeq sequencers. BMC Genom 13:13. doi: 10.1186/1471-2164-13-341 CrossRefGoogle Scholar
  4. 4.
    Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15:1767–1776. doi: 10.1101/gr.3770505 CrossRefPubMedGoogle Scholar
  5. 5.
    Metzker ML (2009) Sequencing technologies: the next generation. Nat Rev Genet 11:31–46. doi: 10.1038/nrg2626 CrossRefPubMedGoogle Scholar
  6. 6.
    Scholz MB, Lo CC, Chain PSG (2012) Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 23:9–15. doi: 10.1016/j.copbio.2011.11.013 CrossRefPubMedGoogle Scholar
  7. 7.
    Marzorati M, Maignien L, Verhelst A, Luta G, Sinnott R, Kerckhof FM, Possemiers S (2013) Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends. Antonie Van Leeuwenhoek 103:409–420. doi: 10.1007/s10482-012-9821-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. doi: 10.1371/journal.pone.0030619 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. doi: 10.1038/ismej.2011.159 CrossRefPubMedGoogle Scholar
  10. 10.
    Caruccio N (2011) Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Method Mol Biol 733:241–255. doi: 10.1007/978-1-61779-089-8_17 CrossRefGoogle Scholar
  11. 11.
    Knierim E, Lucke B, Schwarz JM, Schuelke M, Seelow D (2011) Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS ONE 6:e28240. doi: 10.1371/journal.pone.0028240 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Parkinson NJ, Maslau S, Ferneyhough B, Zhang G, Gregory L, Buck D, Ragoussis J, Ponting CP, Fischer MD (2012) Preparation of high-quality next-generation sequencing libraries from picogram quantities of target DNA. Genome Res 22:125–133. doi: 10.1101/gr.124016.111 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L et al (2013) Exploring nucleo-cytoplasmic large DNA viruses inTara Oceans microbial metagenomes. ISME Journal 7:1678–1695. doi: 10.1038/ismej.2013.59 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810. doi: 10.1073/pnas.0708897105 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shi Y, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5:999–1013. doi: 10.1038/ismej.2010.189 CrossRefPubMedGoogle Scholar
  16. 16.
    Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ (2012) The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–2268. doi: 10.1038/ismej.2012.63 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shao K, Ding W, Wang F, Li H, Ma D, Wang H (2011) Emulsion PCR: a High Efficient Way of PCR Amplification of Random DNA Libraries in Aptamer Selection. PLoS ONE 6:e24910. doi: 10.1371/journal.pone.0024910 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kawashima Eric H, Laurent Farinelli; Pascal Mayer (2005-05-12). ”Patent: Method of nucleic acid amplification”. Retrieved 2012-12-22Google Scholar
  19. 19.
    Fakruddin M, Chowdhury A, Hossain M, Mannan KSB, Mazumdar RM (2012) Pyrosequencing-principles and applications. Life 50:65Google Scholar
  20. 20.
    Berglund EC, Kiialainen A, Syvänen AC (2011) Next-generation sequencing technologies and applications for human genetic history and forensics. Investig Genet 2:23. doi: 10.1186/2041-2223-2-23 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen Y, Sonnaert M, Roberts SJ, Luyten FP, Schrooten J (2012) Tissue engineering part C. Methods 18:444–452. doi: 10.1089/ten.tec.2011.0304 Google Scholar
  22. 22.
    Reuter JA, Spacek DV, Snyder MP (2015) High-Throughput Sequencing Technologies. Mol Cell 58:586–597. doi: 10.1016/j.molcel.2015.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
  24. 24.
    Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genetics 30:418–426. doi: 10.1016/j.tig.2014.07.001 CrossRefGoogle Scholar
  25. 25.
    Eisenstein M (2015) Startups use short-read data to expand long-read sequencing market. Nat Biotechnol 33:433–435. doi: 10.1038/nbt0515-433 CrossRefPubMedGoogle Scholar
  26. 26.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi: 10.1126/science.1162986 CrossRefPubMedGoogle Scholar
  27. 27.
    Mascher M, Amand PS, Stein N, Poland J (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925. doi: 10.1371/journal.pone.0076925 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Meldrum C, Doyle MR, Tothill RW (2011) Next-Generation Sequencing for Cancer Diagnostics: a Practical Perspective. Clin Biochem Rev 32:177–195. PMCID: PMC3219767Google Scholar
  29. 29.
    Veras AAO, de Sál PHCG, Pinheiro KC, das Graças DA, Baraúna RA, Schneider MPC, Azevedo V, Ramos RTJ, Silva A (2014) Efficiency of Corynebacterium pseudotuberculosis 31 Genome Assembly with the Hi-Q Enzyme on an Ion Torrent PGM Sequencing Platform. J Proteomics Bioinform 7:12. doi: 10.4172/jpb.1000342 Google Scholar
  30. 30.
    Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol vol. 2012, Article ID 251364, 11 pages, 2012. doi: 10.1155/2012/251364
  31. 31.
    Schadt EE, Turner S, Kasarskis Andrew (2010) A window into third-generation sequencing. Hum Mol Genet 2010:R227–R240. doi: 10.1093/hmg/ddq416 CrossRefGoogle Scholar
  32. 32.
    Rusk N (2009) Cheap third-generation sequencing. Nat Methods 6:244. doi: 10.1038/nmeth0409-244a CrossRefGoogle Scholar
  33. 33.
    Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303. doi: 10.1146/annurev-anchem-062012-092628 CrossRefGoogle Scholar
  34. 34.
    Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109. doi: 10.1126/science.1150427 CrossRefPubMedGoogle Scholar
  35. 35.
    Hart C, Lipson D, Ozsolak F, Raz T, Steinmann K, Thompson J, Milos PM (2010) Single molecule sequencing:sequence method to enable accurate quantitation. Methods Enzymol 472:407–430. doi: 10.1016/S0076-6879(10)72002-4 CrossRefPubMedGoogle Scholar
  36. 36.
    Hayden EC (2012) Nanopore genome sequencer makes its debut. Nature. doi: 10.1038/nature.2012.10051 Google Scholar
  37. 37.
    Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akesen M (2015) Improved data analysis for the MinION nanopore sequencer. Nat Methods 12:351–356. doi: 10.1038/nmeth.3290 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Miles BN, Ivanov AP, Wilson KA, Doğan F, Japrung D, Edel JB (2013) Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem Soc Rev 42:15–28. doi: 10.1039/c2cs35286a CrossRefPubMedGoogle Scholar
  39. 39.
    Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 3:1–8. doi: 10.1016/j.bdq.2015.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
  41. 41.
    Basu A, Macosko E, Shalek A, McCarroll S, Regev A, and Weitz D (2014) Single-cell genomics using droplet-based microfuidics. Bull Am Phys Soc: APS March Meeting 2014 59:3–7, Denver, ColoradoGoogle Scholar
  42. 42.
    Erlich Y (2015) A vision for ubiquitous sequencing. BioRxiv. doi: 10.1101/019018 Google Scholar
  43. 43.
    Rieber N, Zapatka M, Lasitschka B, Jones D, Northcott P, Hutter B et al (2013) Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies. PLoS ONE 8:e66621. doi: 10.1371/journal.pone.0066621 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Patnaik BB, Park SY, Kang SW, Hwang H-J, Wang TH, Park EB et al (2016) Transcriptome Profile of the Asian Giant Hornet (Vespa mandarinia) Using Illumina HiSeq 4000 Sequencing: De Novo Assembly, Functional Annotation, and Discovery of SSR Markers. Int J Genomics, 2016:4169587. http://doi.org/10.1155/2016/4169587
  45. 45.
    Rosenberg AZ, Armani MD, Fetsch PA, Xi L, Pham TT, Raffeld M et al (2016). High-Throughput Microdissection for Next-Generation Sequencing. PLoS ONE 11:e0151775. http://doi.org/10.1371/journal.pone.0151775
  46. 46.
    Yu P, Lin W (2016). Single-cell transcriptome study as big data. Genomics Proteomics Bioinf 14:21–30. http://doi.org/10.1016/j.gpb.2016.01.005

Copyright information

© Association of Microbiologists of India 2016

Authors and Affiliations

  • Sheetal Ambardar
    • 1
    • 3
    • 4
  • Rikita Gupta
    • 1
  • Deepika Trakroo
    • 1
  • Rup Lal
    • 2
  • Jyoti Vakhlu
    • 1
    Email author
  1. 1.Metagenomics Laboratory, School of BiotechnologyUniversity of JammuJammuIndia
  2. 2.Molecular Biology Laboratory, Department of Zoology, South CampusUniversity of DelhiDelhiIndia
  3. 3.Centre for Cellular and Molecular Platform, National Centre for Biological Sciences, TIFR BangaloreBangaloreIndia
  4. 4.Institute of Trans-Disciplinary Health Sciences and Technology, Trans-Disciplinary UniversityBangaloreIndia

Personalised recommendations