Indian Journal of Microbiology

, Volume 56, Issue 4, pp 433–438 | Cite as

Fusarium tricinctum, An Endophytic Fungus Exhibits Cell Growth Inhibition and Antioxidant Activity

Original Article

Abstract

An endophytic fungus (strain T6) isolated from Taxus baccata was studied for its effect on the growth of human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and peripheral blood mononuclear cells (PBMCs) as well as for its antioxidant activity. Based on morphological characters and internal transcribed spacer (ITS) sequence analysis, this fungus (strain T6) was identified as Fusarium tricinctum. This fungus has shown inhibition in the growth of the MCF-7 and HeLa cancer cell lines. IC50 values of the fungal extract were 225 ± 26 and 220 ± 18 μg ml−1 for MCF-7 and HeLa cell lines, respectively. Further, F. tricinctum showed inhibition in the proliferation of concanavalin A stimulated PBMCs indicating its immunosuppressive potential (IC50 value 110 ± 44 μg ml−1). Tumour necrosis factor (TNF)-α production in concanavalin A stimulated PBMCs and MCF-7 were found to be inhibited which indicates that the antiproliferative effect may be associated with TNF-α. Free radical scavenging results revealed that this fungus also exhibited antioxidant activity (IC50 value 482 ± 9 μg ml−1). Present study results suggested that F. tricinctum has the potential to be used for therapeutic purposes because of its antiproliferative and antioxidant potential.

Keywords

Taxus baccata Cancer cell lines Tumor necrosis factor-α Antioxidant 

Supplementary material

12088_2016_600_MOESM1_ESM.doc (132 kb)
Supplementary material 1 (DOC 132 kb)

References

  1. 1.
    Suryanarayanan TS (2013) Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol 6:561–568. doi:10.1016/j.funeco.2013.09.007 CrossRefGoogle Scholar
  2. 2.
    Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228. doi:10.1039/C1NP00008J CrossRefPubMedGoogle Scholar
  3. 3.
    Suryanarayanan T, Thirunavukkarasu N, Govindarajulu M, Sasse F, Jansen R, Murali T (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19. doi:10.1016/j.fbr.2009.07.001 CrossRefGoogle Scholar
  4. 4.
    Tan R, Zou W (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459. doi:10.1039/B100918O CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771. doi:10.1039/B609472B CrossRefPubMedGoogle Scholar
  6. 6.
    Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess W (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440. doi:10.1099/13500872-142-2-435 CrossRefPubMedGoogle Scholar
  7. 7.
    Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170. doi:10.1007/s13225-013-0228-7 CrossRefGoogle Scholar
  8. 8.
    Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798. doi:10.1016/j.chembiol.2012.06.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719. doi:10.1021/np0502802 CrossRefPubMedGoogle Scholar
  10. 10.
    Nadeem M, Rikhari H, Kumar A, Palni LMS, Nandi SK (2002) Taxol content in the bark of Himalayan Yew in relation to tree age and sex. Phytochemistry 60:627–631. doi:10.1016/S0031-9422(02)00115-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Zaher AM, Makboul MA, Moharram AM, Tekwani BL, Calderon AI (2015) A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibiot 68:197–200. doi:10.1038/ja.2014.129 CrossRefPubMedGoogle Scholar
  12. 12.
    Garyali S, Kumar A, Reddy MS (2014) Diversity and antimitotic activity of taxol-producing endophytic fungi isolated from Himalayan yew. Ann Microbiol 64:1413–1422. doi:10.1007/s13213-013-0786-7 CrossRefGoogle Scholar
  13. 13.
    Zhao K, Zhao L, Jin Y, Wei H, Ping W, Zhou D (2008) Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 27:e744Google Scholar
  14. 14.
    Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi, 4th edn. APS Press, St. PaulGoogle Scholar
  15. 15.
    Zhang P, Zhou PP, Jiang C, Yu H, Yu LJ (2008) Screening of taxol-producing fungi based on PCR amplification from Taxus. Biotechnol Lett 30:2119–2123. doi:10.1007/s10529-008-9801-7 CrossRefPubMedGoogle Scholar
  16. 16.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic, San Diego, pp 315–322Google Scholar
  17. 17.
    Verma B, Reddy MS (2015) Suillus indicus sp. nov. (Boletales, Basidiomycota), a new boletoid fungus from northwestern Himalayas, India. Mycology 6:35–41. doi:10.1080/21501203.2014.988770 CrossRefPubMedGoogle Scholar
  18. 18.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. 20.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277. doi:10.1016/0022-1759(86)90368-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216. doi:10.1126/science.8097061 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhan J, Burns AM, Liu MX, Faeth SH, Gunatilaka AL (2007) Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. J Nat Prod 70:227–232. doi:10.1021/np060394t CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21:15–25. doi:10.1038/cdd.2013.67 CrossRefPubMedGoogle Scholar
  25. 25.
    Lee JC, Lobkovsky E, Pliam NB, Strobel G, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans. J Org Chem 60:7076–7077. doi:10.1021/jo00127a001 CrossRefGoogle Scholar
  26. 26.
    Kumar DSS, Cheung HY, Lau CS, Chen F, Hyde KD (2004) In vitro studies of endophytic fungi from Tripterygium wilfordii with antiproliferative activity on human peripheral blood mononuclear cells. J Ethnopharmacol 94:295–300. doi:10.1016/j.jep.2004.05.019 CrossRefGoogle Scholar
  27. 27.
    Balkwill F (2006) TNF-α in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416. doi:10.1007/s10555-006-9005-3 CrossRefPubMedGoogle Scholar
  28. 28.
    Tong L, Chuang CC, Wu S, Zuo L (2015) Reactive oxygen species in redox cancer therapy. Cancer Lett 367:18–25. doi:10.1016/j.canlet.2015.07.008 CrossRefPubMedGoogle Scholar
  29. 29.
    Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476. doi:10.1016/S0040-4020(03)00255-2 CrossRefGoogle Scholar
  30. 30.
    Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505. doi:10.1007/s11101-012-9260-6 CrossRefGoogle Scholar
  31. 31.
    Yadav M, Yadav A, Yadav JP (2014) In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med 7:256–261. doi:10.1016/S1995-7645(14)60242-X CrossRefGoogle Scholar

Copyright information

© Association of Microbiologists of India 2016

Authors and Affiliations

  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia

Personalised recommendations