Indian Journal of Microbiology

, Volume 56, Issue 3, pp 301–308 | Cite as

Bacteriocinogenic Bacteria Isolated from Raw Goat Milk and Goat Cheese Produced in the Center of México

  • Oscar F. Hernández-Saldaña
  • Mauricio Valencia-Posadas
  • Norma M. de la Fuente-Salcido
  • Dennis K. Bideshi
  • José E. Barboza-Corona
Original Article

Abstract

Currently, there are few reports on the isolation of microorganisms from goat milk and goat cheese that have antibacterial activity. In particular, there are no reports on the isolation of microorganisms with antibacterial activity from these products in central Mexico. Our objective was to isolate bacteria, from goat products, that synthesized antimicrobial peptides with activity against a variety of clinically significant bacteria. We isolated and identified Lactobacillus rhamnosus, L. plantarum, L. pentosus, L. helveticus and Enterococcus faecium from goat cheese, and Aquabacterium fontiphilum, Methylibium petroleiphilum, Piscinobacter aquaticus and Staphylococcus xylosus from goat milk. These bacteria isolated from goat cheese were able to inhibit Staphylococcus aureus, Bacillus cereus, Escherichia coli, Listeria monocytogenes, L. inoccua, Pseudomona aeruginosa, Shigella flexneri, Serratia marcescens, Enterobacter cloacae and Klebsiella pneumoniae. In addition, bacteria from goat milk showed inhibitory activity against B. cereus, L. lactis, E. coli, S. flexneri, E. cloacae and K. pneumonia; S. aureus, L. innocua, S. agalactiae and S. marcescens. The bacteriocins produced by these isolates were shown to be acid stable (pH 2–6) and thermotolerant (up to 100 °C), but were susceptible to proteinases. When screened by PCR for the presence of nisin, pediocin and enterocin A genes, none was found in isolates recovered from goat milk, and only the enterocin A gene was found in isolates from goat cheese.

Keywords

Goat milk Goat cheese Bacteriocins Enterocin A Pathogenic bacteria 

Supplementary material

12088_2016_587_MOESM1_ESM.pdf (501 kb)
Supplementary material 1 (PDF 501 kb)
12088_2016_587_MOESM2_ESM.docx (105 kb)
Supplementary material 2 (DOCX 104 kb)

References

  1. 1.
    Escareño L, Salinas-González H, Wurzinger M, Iñiguez L, Solkner J, Meza-Herrera C (2013) Dairy goat production system. Status quo, perspectives and challenges. Trop Anim Health Prod 45:17–34. doi:10.1007/s11250-012-0246-6 CrossRefPubMedGoogle Scholar
  2. 2.
    Gómez-Ruiz WJ, Pinos-Rodríguez JM, Aguirre-Rivera JR, García-López JC (2012) Analysis of a goat milk cheese industry in a desert rangeland of Mexico. Pastor Res Policy Pract 2:2–11. doi:10.1186/2041-7136-2-5 CrossRefGoogle Scholar
  3. 3.
    Quigley L, O’Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD (2013) The complex microbiota of raw milk. FEMS Microbiol Rev 37:664–698. doi:10.1111/1574-6976 CrossRefPubMedGoogle Scholar
  4. 4.
    Nikolic M, Terzic-Vidojevic A, Jovcic B, Begovic J, Golic N, Topisirovic L (2008) Characterization of lactic acid bacteria isolated from Bukuljac, a homemade goat’s milk cheese. Int J Food Microbiol 122:162–170. doi:10.1016/j.ijfoodmicro.2007.11.075 CrossRefPubMedGoogle Scholar
  5. 5.
    Perin LM, Nero LA (2014) Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis. BMC Microbiol 14:36. doi:10.1186/1471-2180-14-36 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ekici K, Bozkurt H, Isleyici O (2004) Isolation of some pathogens from raw milk of different milch animals. Pak J Nutr 3:161–162. doi:10.3923/pjn.2004.161.162 CrossRefGoogle Scholar
  7. 7.
    Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582. doi:10.1128/MMBR.00016-05 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rodríguez E, González B, Gaya P, Nuñez M, Medina M (2000) Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. Int Dairy J 10:7–15. doi:10.1016/S0958-6946(00)00017-0 CrossRefGoogle Scholar
  9. 9.
    Barrón-Bravo OG, Gutierrez-Chavez AJ, Angel Sahagún CA, Montaldo HH, Shepard L, Valencia-Posadas M (2013) Losses in milk yield, fat and protein contents according to different levels of somatic cell count in dairy goats. Small Rumin Res 113:421–431. doi:10.1016/j.smallrumres.2013.04.003 CrossRefGoogle Scholar
  10. 10.
    León-Galván MF, Barboza-Corona JE, Lechuga-Arana A, Valencia-Posadas M, Aguayo DD, Cedillo-Pelaez C, Martínez-Ortega EA, Gutierrez-Chavez AJ (2015) Molecular detection and sensitivity to antibiotics and bacteriocins of pathogens isolated from bovine mastitis in family dairy herds of Central Mexico. Biomed Res Int 2015:615153. doi:10.1155/2015/615153 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Callon C, Duthoit F, Delbes C, Ferrand M, Le Frileux Y, de Cremoux R, Montel MC (2007) Stability of microbiol communities in goat milk during a lactation year: molecular approaches. Syst Appl Microbiol 30:547–560. doi:10.1016/j.syapm.2007.05.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Barboza-Corona JE, Vázquez-Acosta H, Bideshi-Dennis K, Salcedo-Hernández R (2007) Bacteriocin-like inhibitor substances produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol 187:117–126. doi:10.1007/s00203-006-0178-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Pospiech A, Neumann B (1995) A versatil quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218. doi:10.1016/S0168-9525(00)89052-6 CrossRefPubMedGoogle Scholar
  14. 14.
    León-Galván MF, Carbajal N, Frickey T, Santos L (2009) Microbial identification of the Nichupte-Bojorquez coastal lagoon in Cancun, Mexico. Aquat Ecol 43:197–205. doi:10.1007/s10452-008-9171-1 CrossRefGoogle Scholar
  15. 15.
    Suwanjinda D, Eames C, Panbangred W (2007) Screening of lactic acid bacteria for bacteriocins by microbiological and PCR methods. Biochem Mol Biol Educ 35:364–369. doi:10.1002/bmb.84 CrossRefPubMedGoogle Scholar
  16. 16.
    Rogers AM, Montville TJ (1991) Improved agar diffusion assay for nisin quantification. Food Biotechnol 5:161–168. doi:10.1080/08905439109549799 CrossRefGoogle Scholar
  17. 17.
    Annamalai N, Manivasagan P, Balasubramanian T, Vijayalakshmi S (2009) Enterocin from Enterococcus faecium isolated from mangrove environment. Afr J Biotechnol 8:6311–6316. doi:10.5897/AJB2009.000-9478 Google Scholar
  18. 18.
    Alonso-Calleja C, Carballo J, Capita R, Bernardo A, García-López ML (2002) Changes in the microflora of Valdeteja raw goat’s milk cheese throughout manufacturing and ripening. LWT Food Sci Technol 35:222–232. doi:10.1006/fstl.2001.0842 CrossRefGoogle Scholar
  19. 19.
    Martínez JM, Kok J, Sanders JW, Hernández PE (2000) Heterologous coproduction of enterocin A and pediocin PA-1 by Lactococcus lactis: detection by specific peptide-directed antibodies. Appl Environ Microbiol 66:3543–3549. doi:10.1128/AEM.66.8.3543-3549.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rehaiem A, Pérez Guerra N, Ben Belgacema Z, Fajardo Bernárdez P, Pastrana Castro L, Manaia M (2011) Enhancement of enterocin A production by Enterococcus faecium MMRA and determination of its stability to temperature and pH. Biochem Eng J 56:94–106. doi:10.1016/j.bej.2011.05.012 CrossRefGoogle Scholar
  21. 21.
    Lin MC, Jiang SR, Chou JH, Arun AB, Young CC, Chen WM (2009) Aquabacterium fontiphilum sp. nov. isolated from spring water. Int J Syst Evol Microbiol 59:681–685. doi:10.1099/ijs.0.000745-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Stackebrandt E, Verbarg S, Fruhling A, Busse HJ, Tindall BJ (2009) Dissection of the genus Methylibium: reclassification of Methylibium fulvum as Rhizobacter fulvus comb. nov., Methylibium aquaticum as Piscinibacter aquaticus gen. nov., comb. nov. and Methylibium subsaxonicum as Rivibacter subsaxonicus gen. nov., comb. nov. and emended descriptions of the genera Rhizobacter and Methylibium. Int J Syst Evol Microbiol 59:2552–2560. doi:10.1099/ijs.0.008383-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Schmidt R, Battaglia V, Scow K, Kane S, Hristova KR (2008) Involvement of a novel enzyme, MdpA, in methyl tert-butyl ether degradation in Methylibium petroleiphilum PM1. Appl Environ Microbiol 74:6631–6638. doi:10.1128/AEM.01192-08 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Koop G, De Vliegher S, De Visscher A, Supré K, Haesebrouck F, Nielen M, van Werven T (2012) Differences between coagulase-negative Staphylococcus species in persistence and in effect on somatic cell count and milk yield in dairy goats. J Dairy Sci 95:5075–5084. doi:10.3168/jds.2012-5615 CrossRefPubMedGoogle Scholar
  25. 25.
    Broberg A, Jacobsson K, Ström K, Schnürer J (2007) Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Microbiol 73:5547–5552. doi:10.1128/AEM.02939-06 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association of Microbiologists of India 2016

Authors and Affiliations

  • Oscar F. Hernández-Saldaña
    • 1
    • 7
  • Mauricio Valencia-Posadas
    • 1
    • 3
    • 7
  • Norma M. de la Fuente-Salcido
    • 4
  • Dennis K. Bideshi
    • 5
    • 6
  • José E. Barboza-Corona
    • 1
    • 2
    • 7
  1. 1.División de Ciencias de la VidaUniversidad de Guanajuato, Campus Irapuato-Salamanca (CIS)IrapuatoMexico
  2. 2.Departamento de AlimentosUniversidad de Guanajuato CISIrapuatoMexico
  3. 3.Departamento de AgronomíaUniversidad de Guanajuato CISIrapuatoMexico
  4. 4.Escuela de Ciencias BiológicasUniversidad Autónoma de CoahuilaTorreónMexico
  5. 5.Department of Natural and Mathematical SciencesCalifornia Baptist UniversityRiversideUSA
  6. 6.Department of EntomologyUniversity of California, RiversideRiversideUSA
  7. 7.Graduate Program in Biosciences, Life Science DivisionUniversidad de GuanajuatoIrapuatoMexico

Personalised recommendations